
Math 429 - Representation Theory II

Lie groups and algebras

New concepts will be written in bold, and new formulas will be boxed .

Material which you have already encountered in Math 211 and 314 will be marked as such.

Details in the proofs that we purposely leave out of the notes, so that you may work out for
yourselves, will be colored in blue. Ask your instructors (in person / on the forum) for help.
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Lecture 1
1.1

A Lie group is a group that happens to also be a smooth manifold, with the two structures being
compatible as in Definition 1. The main motivational example is the general linear group GLn of
invertible n × n matrices, which can be regarded as a subset of n2 dimensional space. Before we
give the precise definition, recall that a group G is a set endowed with

� an identity element e ∈ G,

� an involution G→ G, g 7→ g−1,

� an operation G×G→ G, (g, h) 7→ gh that satisfies associativity.

The structures above must be compatible in the usual ways, that you recall from Math 211.

Meanwhile, recall that a topological space G is called a manifold (of dimension N) if it can be
covered by open subsets (called charts) homeomorphic to open balls in RN , such that the overlaps
between charts correspond to C∞ (infinitely differentiable, a.k.a. “smooth”) functions(

an open subset of RN
)
→

(
an open subset of RN

)
The charts allow us to apply much of the usual machinery of calculus to manifolds. For example,
we have a notion of tangent space at any point g ∈ G

TgG =
{
vectors tangent to G at g

}
(1)

At first glance, the definition above makes sense only when G lies inside RN for some N , so that
we can make sense of TgG in some “ambient” tangent space. But for an abstract manifold G, there
is an equivalent definition of tangent spaces via derivations, which only takes as input the notion
of smooth functions G→ R (as you would imagine, a function is called smooth if it corresponds to
a smooth function (open subset of RN ) → R for every chart of G). Explicitly, a R-linear map

v :
(
smooth functions on G

)
→ R (2)

is called a derivation at g ∈ G if it satisfies the Leibniz rule

v(αβ) = v(α) · β(g) + α(g) · v(β) (3)

for all smooth functions α, β on G. Then we define

TgG =
{
derivations at g

}
(4)

which is made into an R-vector space by addition and scalar multiplication. As you would expect, a
smooth map (i.e. a continuous function of the underlying topological spaces, which corresponds to
a C∞ function on every chart) F : G→ G′ between manifolds G,G′ induces linear transformations

F∗ : TgG→ Tg′G
′ (5)

for all g ∈ G and g′ = F (g) (define (5) in terms of derivations). F as above is called
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� an immersion if F∗ is injective at every point g ∈ G;

� an embedding if it is both an immersion and a homeomorphism onto its image. In this case,
we will often write

G ↪→ G′

and call G a submanifold of G′.

Definition 1. A Lie group is a set which has both a structure of group and of a smooth manifold,
such that the inverse G→ G and the operation G×G→ G are smooth functions.

1.2

Beside the general linear group GLn, here are some other important examples of Lie groups
(please check for yourselves that these are indeed Lie groups):

� the special linear group SLn =
{
A ∈ Matn×n

∣∣∣ det(A) = 1
}

� the orthogonal group On =
{
A ∈ Matn×n

∣∣∣ATA = In

}
� the special orthogonal group SOn = On ∩ SLn

� the symplectic group Sp2n =
{
A ∈ Mat2n×2n

∣∣∣ATΩA = Ω
}
, where

Ω =

(
0 In

−In 0

)
� Rn with component-wise addition, and (R∗)n with component-wise multiplication.

Notice that we’ve been intentionally vague about the coefficient field of our matrices in the examples
above. This is because while manifolds are typically defined with respect to R in mind (so the
corresponding matrix groups are GLn(R), On(R), Sp2n(R) etc), one has an analogous theory with
respect to C. Here, one can do one of two things:

� Simply observe that CN ∼= R2N , and so the matrix groups GLn(C), On(C), Sp2n(C) etc are
manifolds in the sense of Subsection 1.1; we will refer to them as real manifolds whenever
there is a chance for confusion.

� Define complex manifolds as in Subsection 1.1, but requiring the charts to be homeomorphic
to open subsets in CN , with the overlaps corresponding to holomorphic functions CN → CN .

Any complex manifold (such as GLn(C), On(C), Sp2n(C)) is also a real manifold, but not vice
versa. To see some more examples of this in the context of Lie groups, the unitary group

U(n) =
{
A ∈ Matn×n(C)

∣∣∣ĀTA = In

}
(6)
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and the special unitary group

SU(n) = U(n) ∩ SLn(C)

are real manifolds and not complex manifolds, despite the fact that they are defined as subsets of
the C vector space of all complex matrices. For example, U(1) = S1 ⊂ C∗ with the operation given
by rotation, and there is no reasonable sense in which a circle can be a complex manifold.

The world of real manifolds is richer in Lie groups than the world of complex manifolds. For
instance, recall that the orthogonal group can be thought of as the set of linear transformations
which preserves the Euclidean inner product. One can consider the generalized orthogonal groups,
defined as the set of linear transformations which preserve a bilinear form of signature (k, n− k):

Ok,n−k =

{
A ∈ Matn×n

∣∣∣AT (
Ik 0

0 −In−k

)
A =

(
Ik 0

0 −In−k

)}
These groups are all non-isomorphic (except when k ↔ n − k) over the reals, but they are all
isomorphic to On over the complex numbers, because −1 has a square root. The flip side of this is
that the complex versions of Lie groups are in general better behaved than their real versions.

Remark. We will use the terms “real Lie group” and “complex Lie group” to differentiate between
Lie groups in the context of real manifolds and complex manifolds, respectively. Similarly, we will
use the terms “smooth function” and “holomorphic function” to differentiate between the types of
allowable functions in the two situations. We will write GLn, SLn, On etc for the corresponding
groups with either real or complex coefficients.

1.3

A vector field on a smooth manifold G will refer to a choice v = {vg ∈ TgG}g∈G of tangent vectors
that varies in a smooth fashion over the charts of G (we will not bother to make this precise, but if
G is a submanifold of RN , the notion of smoothly varying vector field is precisely what you would
intuitively expect). A vector field can be construed as a derivation

v :
(
smooth functions on G

)
→

(
smooth functions on G

)
(7)

which satisfies the Leibniz rule in the following form

v(αβ) = v(α) · β + α · v(β) (8)

Example 1. On RN , any tangent vector is a linear combination of the usual derivatives

∂

∂x1
, . . . ,

∂

∂xN

(followed by evaluation at the point where the tangent vector lives). A collection of tangent vectors{
α1(x1, . . . , xN )

∂

∂x1
+ · · ·+ αN (x1, . . . , xN )

∂

∂xN

}
x1,...,xN∈R

determines a vector field iff the coefficients α1, . . . , αN all depend smoothly on x1, . . . , xN .
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If G is a Lie group, then we have left multiplication maps for each g ∈ G

G
h7→gh−−−−→ G

which are smooth. Therefore, they induce linear isomorphisms between tangent spaces

ThG
left multiplication by g−−−−−−−−−−−−−−→ TghG

Thus, we have a notion of left invariant vector field on G, namely a vector field which is preserved
by the multiplication maps above. Since a left invariant vector field is completely determined by
its value at the identity, we conclude that

TeG ∼=
{
left invariant vector fields on G

}
(9)

1.4

It is customary to write Lie(G) = TeG. Although a priori just a vector space, Lie(G) can be
endowed with an extra structure called a Lie bracket. The key result is the following.

Proposition 1. If v and w are two vector fields (i.e. derivations (7)), then so is

[v,w] (α) = v(w(α))−w(v(α)) (10)

Moreover, if v and w are left invariant vector fields on G, then so is [v,w].

Proof. Explicitly, for any smooth functions α and β, we have

[v,w](αβ) = v(w(αβ))−w(v(αβ)) = v(w(α) · β + α ·w(β))−w(v(α) · β + α · v(β)) =
= v(w(α)) · β +w(α) · v(β) + v(α) ·w(β) + α · v(w(β))−w(v(α)) · β − v(α) ·w(β)−w(α) · v(β)−
− α ·w(v(β)) = (v(w(α))−w(v(α))) · β + α · (v(w(β))−w(v(β)))

Finally, if v and w are left invariant (i.e. preserved by the automorphisms of left multiplication),
then so are the compositions v ◦w and w ◦ v of these vector fields, hence so is [v,w].

The commutator of vector fields is actually a very explicit operation. In local coordinates x1, . . . , xN ,
we may write vector fields as

v = α1
∂

∂x1
+ · · ·+ αn

∂

∂xn
and w = β1

∂

∂x1
+ · · ·+ βn

∂

∂xn

Then we have

[v,w] =

n∑
i=1

n∑
j=1

(
αi
∂βj
∂xi

− βi
∂αj
∂xi

)
∂

∂xj
(11)

It is easy to see that the operation (10) satisfies the following properties.

� anti-symmetry: [v,w] = −[w,v], and
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� the Jacobi identity [v1, [v2,v3]] + [v2, [v3,v1]] + [v3, [v1,v2]] = 0.

We conclude that the vector space Lie(G) of (9) is endowed with an operation

Lie(G)× Lie(G)
[·,·]−−→ Lie(G)

satisfying anti-symmetry and the Jacobi identity. If we regard Lie(G) as the tangent space at e ∈ G,
this operation is as follows: take any two tangent vectors, extend them uniquely to left-invariant
vector fields on G, then take the commutator of the vector fields in question as per (10), and then
restrict the corresponding vector field back to e ∈ G.

1.5

The following definition is an abstract version of the discussion in the previous Subsection, which
actually makes sense over any ground field K.

Definition 2. A Lie algebra g is a K-vector space endowed with a Lie bracket

g× g
[·,·]−−→ g (12)

which is K-bilinear in both arguments and satisfies

� anti-symmetry: [x, y] = −[y, x], and

� the Jacobi identity
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (13)

All Lie algebras studied in this course are finite-dimensional, and char K = 0.

Thus, the discussion in the last paragraph of the previous Subsection shows that Lie(G) has a Lie
algebra structure, for all Lie groups G.

Example 2. Let us work out the Lie algebra structure on

gln = Lie(GLn)

Because GLn is an open subset of the vector space of all n × n matrices, it tangent spaces are all
naturally identified with the vector space in question, so we have an identification

gln = Matn×n

Show that the left-invariant vector field corresponding to X ∈ Matn×n is

(gX)g∈GLn

Given X,Y ∈ Matn×n, calculate the commutator of the corresponding vector fields by formula (11)

[(gX)g∈GLn , (gY )g∈GLn ] =
∑

1≤i,j,k,ℓ≤n
gik (XkℓYℓj − YkℓXℓj)

∂

∂Eij

where we write matrices g =
∑

1≤i,j≤n gijEij etc, in terms of their matrix coefficients in the standard
basis. Restricting the above equality to the identity element gij = δij shows that the Lie bracket on
gln is given by

gln × gln
[·,·]−−→ gln, [X,Y ] = XY − Y X
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1.6

Let us now give examples of Lie algebras, beyond Lie(GLn) = gln. Firstly, note that it’s quite
easy to determine the Lie algebras of matrix groups (i.e. subgroups of GLn cut out by polynomial
equations). For instance you will show in the exercise session that

Lie(SLn) = sln =
{
X ∈ Matn×n

∣∣∣tr X = 0
}

Lie(On) = on =
{
X ∈ Matn×n

∣∣∣XT +X = 0
}
= son = Lie(SOn)

Lie(Sp2n) = sp2n =
{
X ∈ Mat2n×2n

∣∣∣XTΩ+ ΩX = 0
}

Lie(U(n)) = u(n) =
{
X ∈ Matn×n(C)

∣∣∣X̄T +X = 0
}

Lie(SU(n)) = su(n) =
{
X ∈ Matn×n(C)

∣∣∣X̄T +X = 0 and tr X = 0
}

Secondly, there are many more Lie algebras out there than Lie groups. For one thing, Lie algebras
can be defined over any field (including characteristic p) and they may be infinite-dimensional,
neither of which situation is compatible with being a tangent space of a Lie group. For example,
the Virasoro algebra is an important infinite-dimensional Lie algebra

Vir = Cc⊕
⊕
n∈Z

CLn, [c, Ln] = 0, [Lm, Ln] = (m− n)Lm+n + δm,−n
c(m3 −m)

12

which is the fundamental object in conformal field theory. We will not be studying Lie algebras of
infinite dimension or positive characteristic in this course, but they are very rich subjects.

Remark. When we use the notation gln, sln, on, sp2n as above, we are implicitly making a statement
that does not depend on the ground field. When we wish to emphasize the fact that we are considering
these Lie algebras over a specific ground field K (such as R or C), we will denote them by

gln,K, sln,K, on,K, sp2n,K

etc. From a certain point onward in our course (and we will mention this explicitly), we will focus
solely on the field of complex numbers and so we will write gln instead of gln,C etc thereafter.
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Lecture 2
2.1

Many of the usual constructions for groups apply to Lie groups, but we must be careful to make
sure the manifold structure is preserved. For example, a Lie group homomorphism

F : G→ G′ (14)

is required to be both a group homomorphism and a smooth function. Analogously, a linear
transformation

f : g → g′

is called a Lie algebra homomorphism if it preserves the Lie bracket:

f([x, y]) = [f(x), f(y)] (15)

∀x, y ∈ g, where the LHS involves the Lie bracket in g and the RHS involves the Lie bracket in g′.

Proposition 2. If F : G→ G′ is a Lie group homomorphism, then the induced derivative

f : g → g′

is a Lie algebra homomorphism, where g = Lie(G) and g′ = Lie(G′).

Proof. The Lie group homomorphism F induces a derivative on vector fields, which is easily seen to
take left-invariant vector fields to left-invariant vector fields. The fact that this derivative satisfies
(15) is automatic.

2.2

We will now review the basic representation theory of Lie groups, generalizing the treatments that
you have already encountered it in Math 211 or 314. We say that a Lie group G acts on a manifold
X, denoted by

G↷ X (16)

if there exists a smooth function

G×X → X, (g, x) 7→ Φg(x) = g · x

that simultaneously satisfies the usual properties from group theory

Φgg′ = Φg ◦ Φg′ and Φe = IdX (17)

and is a smooth/holomorphic function of real/complex manifolds.

Example 3. Because the groups SLn, On, SOn etc are subgroups of GLn, they naturally act on
an n-dimensional vector space. More interesting actions can be obtained by observing that various
subsets of n-dimensional space are preserved by the aforementioned actions, for instance

On(R) ↷ Sn−1 =
{
x21 + · · ·+ x2n = 1

}
⊂ Rn

U(n) ↷ S2n−1 =
{
|z1|2 + · · ·+ |zn|2 = 1

}
⊂ Cn
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As in the usual case of group theory, we have the usual actions of G on itself

left action g · h = gh

right action g · h = hg−1

adjoint action g · h = ghg−1

The orbits of an action G↷ X are the sets

Gx =
{
g · x

∣∣∣g ∈ G
}

as x runs over X. While the left and right actions G↷ G have a single orbit (in other words, they
are transitive), the orbits of the adjoint action are just the conjugacy classes of G.

2.3

If a Lie group G acts on a vector space V in such a way that all the action maps

Φg : V → V

are linear transformations, then we say that V is a representation of G. This can be rephrased
in terms of the Lie group (with operation given by composition)

GL(V ) =
{
invertible linear transformations V → V

}
(18)

in that to give a representation G↷ V is the same as to give a Lie group homomorphism

G→ GL(V ) , g 7→
(
Φg : V → V

)
(19)

Taking the differential of (19) at the identity gives us

g → gl(V ) , x 7→
(
ϕx : V → V

)
(20)

where we write g = Lie(G) and define

gl(V ) = End(V ) :=
{
linear transformations V → V

}
(21)

Note that (21) is a vector space with respect to addition and a Lie algebra with respect to commu-
tator, and it coincides with Lie(GL(V )). The following statement is an immediate consequence of
(20) being a Lie algebra homomorphism, which follows from Proposition 2.

Proposition 3. The assignment (20) is a Lie algebra representation, i.e. an assignment{
ϕx : V → V

}
x∈g

of linear transformations (which depend linearly on x) such that

ϕ[x,y] = ϕx ◦ ϕy − ϕy ◦ ϕx (22)

for all x, y ∈ g.
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2.4

The adjoint action Adg(h) = ghg−1

G↷ G, Adg : G→ G (23)

does not constitute a representation because G is not a vector space, but its derivative

G↷ g, Adg : g → g (24)

is a representation, according to the following.

Proposition 4. Formula (24) is a Lie group representation, and its derivative

g ↷ g, adx : g → g (25)

is a Lie algebra representation. Explicitly,

adx(y) = [x, y] (26)

for all x, y ∈ g. Both (24) and (25) are called the adjoint representation.

Proof. The fact that (24) is a Lie group representation is immediate, as Adg : g → g is a linear
function (as are all derivatives of smooth functions) which inherits the multiplicativity property (17)
from Adg : G → G. Therefore, its derivative (25) is a Lie algebra representation by Proposition
2. Formula (26) is best proved by an alternative description of the Lie bracket involving one-
parameter subgroups (to be covered in the exercise session), but let us give an explicit computation
when g = gln. We have

Adg(h) = ghg−1

for all g, h ∈ GLn. Letting h = 1 + tY for a “small” value of t and any n × n matrix Y (this is
reasonable, since we are identifying the tangent space at e ∈ GLn with the ambient space of all
matrices), we see that the adjoint representation is given by

Adg(Y ) = gY g−1

for all g ∈ GLn, Y ∈ gln. To differentiate the formula above, let g(t) = 1 + tX for “small” t. Then

g(t)−1 = 1− tX +
t2X2

2
− . . .

and so

adX(Y ) = lim
t→0

Adg(t)(Y )− Y

t
= lim

t→0

(1 + tX)Y (1− tX + . . . )− Y

t
= XY − Y X

which coincides with the Lie bracket of gln.
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Example 4. For any vector space V , we have a tautological representation

GL(V ) ↷ V

We may extend this action naturally to any tensor product of symmetric and exterior powers of V

GL(V ) ↷ · · · ⊗ SkV ⊗ ∧ℓV ⊗ · · ·

You have seen at the very end of Math 314 that these representation come into play in Schur-Weyl
duality. This is a statement that for any n ∈ N, we have a decomposition

V ⊗ · · · ⊗ V︸ ︷︷ ︸
n factors

=
⊕

partition λ

L(λ)⊗ Sλ

of representations of GL(V ) × Sn (the symmetric group permutes the factors in the LHS), where
in the RHS we write Sλ for the irreducible Specht modules of Sn, and L(λ) for the irreducible
representations of GL(V ). We will characterize the latter in more detail in Lectures 13 and 14.

2.5

Many of the basic notions from Math 314 apply to Lie groups as they did to finite groups. Given
representations G↷ V and G↷W (determined by collections {Φg : V → V }g∈G and {Ψg :W →
W}g∈G, respectively) a G-intertwiner is a linear transformation

f : V −→W

such that the following diagram commutes

V
f−−−−→ W

Φg

y yΨg

V
f−−−−→ W

for all g ∈ G. If we write Φg(v) = g ·v and Ψg(w) = g ·w for all v ∈ V and w ∈W , then the property
of being a G-intertwiner is equivalent to f(g · v) = g · f(v) for all g ∈ G, v ∈ V . If a G-intertwiner
is moreover bijective, then we call it an isomorphism. Recall that a subset of a vector space is
called a subspace if and only if it is preserved under addition of vectors and scalar multiplication.
If we have a representation G↷ V , then a subspace W ⊆ V is called a subrepresentation if

Φg(W ) ⊆W

for all g ∈ G. Moreover, in this case there is an induced quotient representation

G↷ V/W

Given representations V and W of G, we can make their direct sums, tensor products and duals
into G-representations via

G↷ V ⊕W, g · (v, w) = (g(v), g(w)) (27)

G↷ V ⊗W, g · (v ⊗ w) = g(v)⊗ g(w) (28)

G↷ V ∨, (g · λ)(v) = λ(g−1 · v) (29)
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The natural analogues of all notions above (intertwiners, isomorphisms, sub-and-quotient represen-
tations) apply equally well to Lie algebras as to Lie groups. The only difference lies in formulas
(27), (28), (29), which must be modified in the case of Lie algebra representations to

g ↷ V ⊕W, x · (v, w) = (x(v), x(w)) (30)

g ↷ V ⊗W, x · (v ⊗ w) = x(v)⊗ w + v ⊗ x(w) (31)

g ↷ V ∨, (x · ψ)(v) = −ψ(x(v)) (32)

2.6

We will state the following basic facts for representations of Lie groups G, but they apply equally
well for representations of Lie algebras g.

Definition 3. A representation G ↷ V is called irreducible if it does not have any proper sub-
representations (i.e. no subrepresentations other than 0 or V ).

One of the main tools in representation theory is the following result, known as Schur’s lemma.

Lemma 1. Suppose we have a G-intertwiner f : V →W between two representations of G, which
is not identically 0. If V is irreducible, then f is injective. If W is irreducible, then f is surjective.

As an immediate corollary of Lemma 1, any non-zero intertwiner between two irreducible repre-
sentations must be an isomorphism. All of the above is the same for Lie groups as it was for finite
groups, but some things do not generalize so easily. An example of this is Maschke’s theorem,
which says that any complex finite-dimensional representation of a finite group G ↷ V has the
property that any subrepresentation W ⊂ V has a complement

V ∼=W ⊕W ′ (33)

such that W ′ is also a subrepresentation of V (an important consequence of this is that finite-
dimensional complex representations of finite groups are completely reducible, i.e. isomorphic to
direct sums of irreducible representations). This result completely fails for Lie groups in general.
For example, consider the action of C (Lie group with respect to addition) on V = C2 via

x ·
(
a
b

)
=

(
1 x
0 1

)(
a
b

)
(34)

The subspace W = {b = 0} is a one-dimensional subrepresentation of V , but because it is the
unique such subrepresentation, it is impossible to find a decomposition (33). However, compact
Lie groups and unitary representations will give us a setting in which we can salvage some of these
results. We will study these (and the corresponding Lie algebras) in Lecture 4.
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Lecture 3
3.1

Let G be a Lie group. A subgroup H ⊂ G is called a

� Lie subgroup if H ↪→ G is an immersion

� closed Lie subgroup if H ↪→ G is an embedding

The terminology for closed Lie subgroups is motivated by the (non-obvious) fact that they are also
closed as topological spaces. Most Lie subgroups of interest will turn out to be closed, for example
the stabilizers of Lie group actions G↷M

StabG(m) =
{
g ∈ G

∣∣∣g ·m = m
}

are all closed Lie subgroups of G. However, there exist examples of non-closed Lie subgroups, e.g.
the image of the group homomorphism R → R2/Z2, t 7→ (t, ct) for some c ∈ R\Q.

Theorem 1. (a) If H ⊆ G is a normal closed Lie subgroup, then

G/H

has an induced structure of a Lie group.

(b) If f : G→ G′ is a Lie group homomorphism, then Ker f is a normal closed Lie subgroup, and
we obtain an induced Lie group homomorphism

G/Ker f ↪→ G′

which is an immersion. Im f is a Lie subgroup of G′ on general grounds; if it is moreover a closed
Lie subgroup of G′ then we have the following analogue of the first isomorphism theorem

G/Ker f ∼= Im f

(c) The center Z(G) is a closed Lie subgroup.

3.2

Given a Lie algebra g in the generality of Definition 2, a subspace

� h ⊂ g is called a (Lie) subalgebra if it is closed under the Lie bracket, i.e. [h, h] ⊆ h.

� h ⊂ g is called an ideal if [g, h] ⊆ h. The kernel of any Lie algebra homomorphism is an ideal.

Check for yourself that if h ⊂ g is an ideal, then g/h inherits a Lie algebra structure. The following
result is an analogue of the correspondence (or lattice) theorem that you saw for groups in Math
211.
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Theorem 2. If h ⊂ g is an ideal, then there is a one-to-one correspondence(
Lie subalgebras h ⊆ a ⊆ g

)
↔

(
Lie subalgebras ā ⊆ ḡ

)
(35)

given by ā = π(a) and a = π−1(ā), where

π : g → ḡ := g/h

is the natural projection. In (35), a is an ideal if and only if ā is an ideal.

One may also represent quotients in terms of short exact sequences of Lie algebras

0 → h
ϕ−→ g

ψ−→ ḡ → 0 (36)

with the implication being that Im ϕ is an ideal in g, and ψ : g/Im ϕ→ ḡ is an isomorphism.

Definition 4. Given Lie algebras g1 and g2 over the same ground field, their direct sum

g = g1 ⊕ g2 (37)

has Lie bracket defined by [
(x1, x2), (y1, y2)

]
=

(
[x1, y1], [x2, y2]

)
In other words, the subalgebras g1 and g2 in (37) are ideals of g.

For example, show that we have an isomorphism of Lie algebras

gln,K
∼= K⊕ sln,K (38)

over any ground field K of characteristic that does not divide n, where the right-hand side is the
direct sum of the trivial one-dimensional Lie algebra and the special linear Lie algebra.

Definition 5. Given an element x in a Lie algebra g, its centralizer is

zx(g) =
{
y ∈ g

∣∣∣[x, y] = 0
}

(39)

The intersection of all the centralizers is called the center of g

z(g) =
{
y ∈ g

∣∣∣[x, y] = 0, ∀x ∈ g
}

(40)

Theorem 3. Let G be a real/complex Lie group with real/complex Lie algebra g.

(a) If H ⊆ G is a Lie subgroup, not necessarily closed, then h = Lie(H) is a Lie subalgebra of g
(this correspondence H ⇝ h is invertible if we restrict to connected H).

(b) If H ⊆ G is a normal closed Lie subgroup, then h = Lie(H) is an ideal of g, and

Lie(G/H) ∼= g/h

(c) Lie(Z(G)) = z(g) if G is connected.
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3.3

The above Theorem establishes a correspondence between subgroups of a Lie group G and subal-
gebras of g = Lie(G). The following result generalizes this fact.

Theorem 4. (a) For any real/complex Lie groups G and G′ (with the former being connected),
there exists an injective function(

Lie group homomorphisms G→ G′
)
⇝

(
Lie algebra homomorphisms g → g′

)
(41)

where g = Lie(G), g′ = Lie(G′), given by the derivative at the identity.

(b) If furthermore G is simply connected, then (41) is a bijection.

It is clear why Theorem 4 requires G to be connected, because g only “knows” about the connected
component of the identity in G. The simply-connected assumption is necessary to rule out examples
like

S1 =
{
e2πix

∣∣∣x ∈ R
}

with Lie(S1) = R

(the operation on S1 is multiplication, while the Lie bracket on R is trivial), in which case

HomLie group(S
1, S1) ∼= Z but HomLie algebra(R,R) = R

Proof. of Theorem 4: (a) The correspondence (41) is given by the derivative, and we have already
seen that it takes a Lie group homomorphism F : G → G′ to a Lie algebra homomorphism
f = F∗ : g → g′. By Exercise Sheet 2, Problem 3, we have

F (exp(x)) = exp(f(x))

for any x in a neighborhood of 0 ∈ g. This means that knowledge of f determines F completely
in a neighborhood of e ∈ G. However, any connected Lie group is generated by any neighborhood
of the identity (it is not hard to show that the subgroup generated by any open subset must be
open; if H ⊂ G is the subset generated by an open neighborhood U of the identity, then G\H is
also open, because for any g ∈ G\H we must have gU ∩H = ∅; since G is connected, this implies
that H = G) so we conclude that f completely determines F , i.e. the assignment (41) is injective.

(b) Let us show that any Lie algebra homomorphism f : g → g′ can be lifted to a Lie group
homomorphism F : G → G′. To this end, we invoke the Baker-Campbell-Hausdorff formula from
Exercise Sheet 2, Problem 5:

exp(x) exp(y) = exp

(
x+ y +

[x, y]

2
+ . . .

)
Then the function

F : G→ G′, F (exp(x)) = exp(f(x))

gives a Lie group homomorphism in a neighborhood of the identity e ∈ U ⊂ G, because

F (exp(x) exp(y)) = F

(
exp

(
x+ y +

[x, y]

2
+ . . .

))
= exp

(
f(x) + f(y) + f

(
[x, y]

2

)
+ . . .

)
=

15



= exp

(
f(x) + f(y) +

[f(x), f(y)]

2
+ . . .

)
= exp(f(x)) exp(f(y)) = F (exp(x))F (exp(y))

As we have seen in part (a), the group G is generated by U . Thus, for any g ∈ G we can choose

e = g0, g1, . . . , gk−1, gk = g (42)

where each gi−1 is close enough to gi so that gig
−1
i−1 ∈ U . This means that we can define

F (g) = F (gkg
−1
k−1)F (gk−1g

−1
k−2) . . . F (g2g

−1
1 )F (g1g

−1
0 ) (43)

To show that this is well-defined, the key observation is that the value of F (g) above is independent
of the choice of (42). To see this, consider any

e = g0, g1, . . . , gk−1, gk = g = g′k′ , g
′
k′−1, . . . , g

′
1, g

′
0 = e

then string a path through the gi’s and a path through the g′i’s, and then take a homotopy between
the two paths (which exists because G is simply connected). We leave the details to you. The
independence of (43) on the choice of (42) also proves F (gh) = F (g)F (h), because one can construct
a sequence (42) from e to gh by stringing together an analogous sequence for g and one for h.

3.4

The following result is sometimes known as Lie’s third theorem.

Theorem 5. Any finite-dimensional real/complex Lie algebra g has the property that

g ∼= Lie(G)

for a unique (up to isomorphism) simply connected real/complex Lie group G.

Proof. This is a quite difficult result, unless one accepts Ado’s theorem: any finite-dimensional
Lie algebra (over any field) has a faithful finite-dimensional representation, i.e. one such that (20)
is injective. Therefore, we may assume that the Lie algebra in Theorem 5 is of the form

g ⊂ gln,K

for K ∈ {R,C}. Let G′ ⊂ GLn(K) to be the closure of the subgroup generated by {exp(X)}X∈g
with respect to the usual matrix exponential. To obtain a simply connected Lie group, we define

G =
{
paths γ : [0, 1] → G, γ(0) = e

}/
homotopy

made into a Lie group with respect to pointwise multiplication of paths. The covering map

G→ G′, γ 7→ γ(1)

is a Lie group homomorphism. It is well-known that G and G′ have the same tangent space at the
identity, which is g by construction. The uniqueness is a special case of Theorem 4.
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3.5

A particularly important special case of the results in the previous Subsection arises in the study
of Lie group representations

G↷ V ⇔ homomorphisms G→ GL(V ) (44)

Theorem 4 implies that if G is connected (for example SLn(R), SOn(R), Sp2n(R), U(n), SU(n),
GLn(C), SLn(C), SOn(C), Sp2n(C)), then such a representation is completely determined by the
induced representation of g = Lie(G)

g ↷ V ⇔ homomorphisms g → gl(V ) (45)

If moreover G is simply connected (for example SU(n), SLn(C), Sp2n(C)), then any representation
(45) can be uniquely lifted to a representation (44). This is very convenient, as it reduces the
study of Lie group representations (which is a more complicated problem that interweaves algebra
and geometry) to the purely algebraic problem of studying Lie algebra representations. So for
instance, the discussion on finite-dimensional representations of U(n) from the next Lecture will
also imply that analogous discussion on finite-dimensional representations of u(n). Conversely, the
classification of finite-dimensional representations of sl2,C in Lecture 5 will determine an analogous
classification of finite-dimensional representations of SL2(C).
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Lecture 4
4.1

You have already seen a version of what follows in Math 314, but we include it for review. Recall
that a Hilbert space is a C-vector space V endowed with an inner product

V ⊗ V
⟨·,·⟩−−→ C

which is linear in the first argument, satisfies ⟨v1, v2⟩ = ⟨v2, v1⟩ for all v1, v2 ∈ V , and ⟨v, v⟩ ∈ R>0

if v ̸= 0. A linear transformation f : V → V is called unitary if it preserves the inner product〈
f(v1), f(v2)

〉
=

〈
v1, v2

〉
If V = Cn with the inner product〈

(z1, . . . , zn), (w1, . . . , wn)
〉
= z1w1 + · · ·+ znwn (46)

then a unitary linear transformation is simply given by a unitary matrix A as in (6), i.e. f(v) = Av.

Definition 6. If V is a Hilbert space, then a representation G ↷ V is called unitary if all the
action maps Φg : V → V are unitary linear transformations.

Unitary representations satisfy Maschke’s theorem. Indeed, given a subrepresentation W ⊆ V of a
finite-dimensional representation G↷ V over the complex numbers, one defines

W ′ =
{
v ∈ V

∣∣∣⟨v,W ⟩ = 0
}

The fact that all the Φg are unitary (i.e. preserve the inner product) implies that all the Φg preserve
W ′ (i.e. W ′ is a subrepresentation), while the fact that V = W ⊕W ′ follows from the bilinearity
and positive definiteness of the inner product. After repeated applications of Maschke’s theorem,
one concludes that finite-dimensional unitary representations are completely reducible, i.e.

V ∼=W1 ⊕ · · · ⊕Wk

where W1, . . . ,Wk are irreducible representations.

4.2

A complex representation V of a Lie group G is called unitarizable if it admits an inner product
with respect to which it is a unitary representation. Unitarizable representations also have desirable
properties like Maschke’s theorem, and the following discussion provides a large source of examples.

Definition 7. A real Lie group is called compact if it is compact as a topological space.

Since most Lie groups we will encounter are matrix groups, compactness is equivalent (by the
Heine-Borel theorem) with being closed and bounded. Thus, we see that SLn, SOn, Sp2n, . . . for
n ≥ 2 are not compact, since one can easily cook up a matrix in each of these sets that has top-left
entry of arbitrarily large absolute value. However, the unitary group U(n) is compact because
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� it is closed, as the equation ĀTA = In is polynomial in the real and imaginary parts of the
entries {aij}1≤i,j≤n of a matrix A,

� it is bounded, as
∑

1≤i,j≤n |aij |2 = tr(ĀTA) = n

Proposition 5. Any complex representation V of a compact Lie group G is unitarizable.

Proof. Since V ∼= Cn for some n, we can consider the standard inner product

V ⊗ V
⟨·,·⟩−−→ C

given by formula (46). We may define another inner product by “averaging” the one above over
the compact Lie group G 〈

v1, v2

〉avg
=

∫
G

〈
Φg(v1),Φg(v2)

〉
dg (47)

where dg is known as a Haar measure on G (i.e. a measure which is invariant under the right
action, i.e. dg = d(gh−1) for all h ∈ G; its existence is a difficult theorem). The compactness of G
means that the formula above is well-defined, and the fact that it determines an inner product is a
straightforward check of the axioms, which we recommend you do. To show that V with the inner
product (47) is a unitary representation, choose any h ∈ G and note that〈

Φh(v1),Φh(v2)
〉avg

=

∫
G

〈
Φgh(v1),Φgh(v2)

〉
dg =

∫
G

〈
Φg(v1),Φg(v2)

〉
d(gh−1)

The RHS of the above is equal to the RHS of (47) precisely because dg is a Haar measure.

4.3

As we have seen in the previous Subsection, the representation theory of compact Lie groups is
simpler than that of arbitrary Lie groups. However, the two can be related by a procedure known
as “Weyl’s unitary trick”. The following is an important result, which we will not prove.

Theorem 6. Any Lie group has a maximal compact subgroup, and any two such maximal compact
subgroups are conjugates of each other.

Thus, we will often speak of “the” maximal compact subgroup, at least up to conjugation. For
example, in the following table we list maximal compact subgroups of important matrix groups

GLn(C)⇝ U(n)

SLn(C)⇝ SU(n)

GLn(R)⇝ On(R)
SLn(R)⇝ SOn(R)

The maximal compact subgroup of Sp2n(R) is also isomorphic to U(n), while the maximal compact
subgroup of Sp2n(C) is its intersection with U(2n) inside square matrices of size 2n. Induction and
restriction (which you learned in the context of finite groups in Math 314) allow one to relate the
representations of a Lie group with those of its maximal compact subgroup. When it comes to Lie
algebras, compact Lie groups are special for the following reason.
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Theorem 7. If G is a connected compact Lie group, then the exponential map g → G is surjective.

Proof. An important result called the Peter-Weyl theorem implies that any compact Lie group
G embeds into some U(n). Since the exponential map g → G is then restricted from the exponential
map

u(n) → U(n)

then it suffices to show that the latter is surjective. This is a well-known consequence of the fact
that any unitary matrix is diagonalizable

g = P · diag(eiθ1 , . . . , eiθn) · P−1

with P unitary and θ1, . . . , θn ∈ R. Therefore, the logarithm of g

x = P · diag(iθ1, . . . , iθn) · P−1

is well-defined and lies in u(n).

4.4

Until now, we have presented results that were completely parallel between the real and complex
settings. We will now show the rich interplay between these two settings.

Definition 8. If k is a real Lie algebra, we call

kC = k⊗R C = k⊕ ki

(with the same Lie bracket, but extended to complex coefficients) the complexification of k.

Conversely, if a complex Lie algebra g is isomorphic to kC for a real Lie algebra k, then we call k a
real form of g. Complexification is a powerful tool, but it is not always obvious, as shown by the
following example

(sln,R)C
∼= sln,C ∼= su(n)C (48)

(in other words, sln(C) has two interesting real forms). While the first isomorphism is obvious (just
extend the coefficients of matrices from real to complex), we invite you to prove the second one.

Definition 9. Let K be a compact real Lie group. A complexification of K is a complex Lie
group G together with an embedding of smooth manifolds

K ↪→ G

which is universal with respect to Lie group homomorphisms from K to complex Lie groups.

Theorem 8. Any compact real Lie group K admits a complexification G, whose maximal compact
subgroup is K itself. The Lie algebra k = Lie(K) is a real form of g = Lie(G).
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In (48), we showed that sln,C is a complexification of su(n). Let us now show that

SLn(C) is a complexification of SU(n) (49)

Any compact subgroup of SLn(C) preserves an inner product on Cn by the argument in the proof
of Proposition 5, so any such compact subgroup must be contained inside a conjugate of the unitary
group; thus, we conclude that SU(n) is a maximal compact subgroup of SLn(C). To see that (49)
satisfies the universality property of Definition 9, a good way is to realize SU(n) and SLn(C) as
one and the same matrix group, but the former with real coefficients and the latter with complex
coefficients. The solution is to consider{

A,B ∈ Matn×n

∣∣∣AAT +BBT = In, AB
T = BAT ,det(A+Bi) = 1

}
(50)

with multiplication given by

(A,B)(A′, B′) = (AA′ −BB′, AB′ +BA′)

Check that the above multiplication defines a group. When A,B are real matrices, we see that
A+Bi is a unitary matrix, and so we recognize the above group as SU(n). When A,B are complex
matrices, one needs to check that any matrix g ∈ SLn(C) can be uniquely written as A+Bi, where

A and B are complex matrices which satisfy the conditions in (50) (set A = g+gT,−1

2 , B = g−gT,−1

2i ).

Remark: as a partial converse to Theorem 8, we have the following (you are not expected to know
what “semisimple” means yet).

Theorem 9. Suppose a complex Lie algebra g is semisimple, in the sense of Definition 13. Then it
has a real form k which is the Lie algebra of a compact Lie group K. Moreover, if G is the connected
complex Lie group with Lie algebra g, one can choose K to be a maximal compact subgroup of G.

4.5

We have already seen that compact Lie groups such as SU(n) have completely reducible complex
finite-dimensional representations

V ∼= V1 ⊕ · · · ⊕ Vk

where Vi are all irreducible. Since SU(n) is simply connected, then Theorem 4 (see also the
discussion in Subsection 3.5) tells us that representations of su(n) are also completely reducible.

Proposition 6. If k is a real Lie algebra with complexification g = kC, then any complex repre-
sentation of k can be uniquely made into a representation of g. Moreover, any k-intertwiner can be
uniquely upgraded to an g-intertwiner.

The Proposition above is straightforward. As a consequence of Proposition 6 and formula (48),
we conclude that the representation theory of sln,C inherits the properties of the representation
theory of su(n). In particular, any complex finite-dimensional representation of sln,C is completely
reducible. Of course, there are more explicit ways to see the complete reducibility of sln,C repre-
sentations, and we will now approach this from the viewpoint of semisimple Lie algebras.
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Lecture 5
5.1

Before we develop the general theory of Lie algebras, let us focus on the simplest example:

sl2 =

{(
a b
c d

) ∣∣∣a, b, c, d ∈ C, a+ d = 0

}
(51)

In keeping with standard practice in representation theory, we use the notation sl2 even though the
subsequent discussion requires our working over the field of complex numbers (the most important
thing being that we restrict attention to complex representations hereafter). Thus, sl2 refers to a
three-dimensional complex Lie algebra, with basis given by

sl2 = CE ⊕ CH ⊕ CF

where

E =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)
(52)

The Lie bracket can be easily computed from commutators of matrices

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H (53)

It is easy to construct a one-dimensional representation L(0) = C of sl2 (just have all of E,F,H
act as 0) and a two-dimensional representation L(1) = C2 of sl2 (the natural action on C2 given by
the 2× 2 matrices (52)). Convince yourselves that they are both irreducible representations.

5.2

The action sl2 ↷ C2 generalizes to the symmetric powers of C2

SnC2 =
{
linear combinations of w1 ⊗ · · · ⊗wn

∣∣∣w1, . . . , wn ∈ C2
}/(

· · ·w⊗w′ · · · − · · ·w′ ⊗w · · ·
)

If we let e1, e2 be the standard basis of C2, then we obtain a basis of the n-th symmetric power

SnC2 =

n⊕
i=0

Cvi, where vi = e⊗i1 ⊗ e⊗n−i2

and so SnC2 has dimension n+ 1. Moreover, the action sl2 ↷ C2 extends to an action

sl2 ↷ L(n) = SnC2

given by the formula x · (w1 ⊗ · · · ⊗ wn) =
∑n

i=1w1 ⊗ · · · ⊗ x(wi)⊗ · · · ⊗ wn and explicitly by

E · vi = (n− i)vi+1 (54)

F · vi = ivi−1 (55)

H · vi = (2i− n)vi (56)

It is easy to check from the formulas above that L(n) is irreducible and that H acts by a diagonal-
izable operator. We will soon see that the latter is actually a general feature. Recall that we only
consider complex representations in this Lecture.
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Proposition 7. Any n+ 1 dimensional irreducible representation of sl2 is isomorphic to L(n).

Proof. Consider an irreducible representation sl2 ↷ V and let us consider the eigenspaces of H

Vℓ =
{
v ∈ V

∣∣∣H · v = ℓv
}

It is an easy consequence of (53) that
E · Vℓ ⊆ Vℓ+2

F · Vℓ ⊆ Vℓ−2

for all ℓ. This implies that the direct sum of Vℓ is a subrepresentation of V , which must be non-
zero because H has at least one non-zero eigenvector (this requires our working over the complex
numbers). Because V is irreducible, this implies that

V =
⊕
ℓ∈C

Vℓ

Because V is finite-dimensional, only finitely many of the Vℓ’s are nonzero. Let us consider a
maximal such ℓ, i.e. such that Vℓ ̸= 0 but Vℓ+2 = 0. For any 0 ̸= v ∈ Vℓ, show using (53) that

v, Fv, F 2v, . . . , Fnv (57)

form a subrepresentation of V , where n + 1 is the smallest positive integer such that Fn+1v = 0.
The vectors (57) are linearly independent, because they lie in different eigenspaces of H. Because
V is irreducible, we conclude that

V =

n⊕
i=0

CF iv

It is easy to check that the assignment F iv 7→ vn−i

(n−i)! gives an isomorphism V ∼= L(n).

5.3

Having fully characterized the irreducible representations of sl2, let us now characterize general
finite-dimensional representations. The last paragraph of Subsection 4.5 shows that a finite-
dimensional representation of sl2 ↷ V splits up as a direct sum of irreducible representations.
By Proposition 7, we have

V ∼= L(n1)⊕ · · · ⊕ L(nk) (58)

for certain n1, . . . , nk ∈ N. This property is called the complete reducibility of finite-dimensional
representations of sl2.

Proposition 8. Any finite-dimensional representation sl2 ↷ V has a decomposition

V =
⊕
ℓ∈Z

Vℓ (59)

where Vℓ = {v ∈ V |Hv = ℓv}. Those ℓ’s such that Vℓ ̸= 0 in the above formula are called the
weights of V , and the corresponding Vℓ are called the weight spaces.

23



Note how different the situation would have been if we replaced sl2 by the one-dimensional Lie
algebra CH ∼= gl1. Since a representation of the latter Lie algebra boils down to an abritrary linear
transformation H on a vector space, there would be no restriction on the eigenvalues of such an H.
In stark contrast, the presence of E and F in the Lie algebra sl2 forces H to act as a diagonalizable
matrix with integer eigenvalues.

Proof. of Proposition 8: By (58), it suffices to prove the result for V = L(n). In this case, we saw
in (56) that the irreducible representation L(n) has a weight decomposition (59) with weights

n, n− 2, . . . , 2− n,−n (60)

Because the weights of irreducible representations are symmetric around the origin, and because
every finite-dimensional representations of sl2 is a direct sum of the form (58), we have the following
consequence (which plays an important part in the hard Lefschetz theorem in algebraic geometry).

Corollary 1. If V is a finite-dimensional representation of sl2, then for all k ∈ N, the linear
transformations Ek and F k give isomorphisms between the k-th and −k-th weight subspaces of V .

Corollary 2. Assume that a representation sl2 ↷ V has finite-dimensional weight subspaces, and
the subrepresentation generated by every vector is finite-dimensional. Then V is finite-dimensional.

Proof. If V were not finite-dimensional, then we can inductively construct a subrepresentation

L(n1)⊕ · · · ⊕ L(nk) ↪→ V (61)

for arbitrarily large k ∈ N (with n1, . . . , nk ∈ N being arbitrary). Indeed, consider a subrepresenta-
tion as in (61) and let v be a vector not inside it. By the hypothesis, v generates a finite-dimensional
sl2 representation W . Letting W̄ be the sum of W and L(n1) ⊕ · · · ⊕ L(nk) means that W̄ is a
finite-dimensional representation of sl2, hence completely reducible. We may then find natural
numbers nk+1, . . . , nk+k′ such that

L(n1)⊕ · · · ⊕ L(nk+k′) ∼= W̄ ↪→ V

However, every one of the irreducible representations in (61) contributes a dimension of 1 to either
the 0-th or the 1-st weight subspace of V , by (60). Since the latter are finite-dimensional, we obtain
a contradiction.

5.4

We will now define the Casimir operator for sl2, which will be introduced in all its glory in
Subsection 8.4. Consider any representation

sl2 ↷ V
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and consider the linear transformation

C = EF + FE +
H2

2
: V → V (62)

(above, we slightly abuse notation by writing E,F,H for the linear transformations on V induced
by the same-named elements of sl2). We stress the fact that C is not an element of sl2, but it can
be understood as an element in the universal enveloping algebra of sl2, as in the following Lecture.
In the meantime, let us observe that the defining relations in the Lie algebra sl2 imply that

C = 2FE +H +
H2

2
(63)

More importantly, we have the following property.

Proposition 9. The operator C commutes with E,F,H. In particular, if V is irreducible, then C
is a scalar multiple of the identity (by Schur’s Lemma).

Proof. The Proposition is easy, but very important, so we present the details. Formulas (53) and
the Leibniz rule for commutators of products imply that

[E,C] = E[E,F ] + [E,F ]E +
H[E,H]

2
+

[E,H]H

2
= EH +HE −HE − EH = 0

[F,C] = [F,E]F + F [F,E] +
H[F,H]

2
+

[F,H]H

2
= −HF − FH +HF + FH = 0

[H,C] = [H,E]F + E[H,F ] + [H,F ]E + F [H,E] = 2EF − 2EF − 2FE + 2FE = 0

To compute the constant by which C acts on the irreducible representation L(n), it suffices to
compute its action on the highest weight vector vn. Because E · vn = 0, then (63) implies that

C · vn =
n(n+ 2)

2
vn

so we conclude that the constant in question is n(n+2)
2 . For later purposes, it will be important to

calculate the action of the terms EF and FE on the ℓ-th weight subspace of L(n) for all ℓ ∈ Z,
which is also quite easy from formulas (54)-(55)

EF · vi = i(n− i+ 1) · vi ⇒ EF
∣∣∣
weight ℓ

=
(n+ ℓ)(n− ℓ+ 2)

4
(64)

FE · vi = (i+ 1)(n− i) · vi ⇒ FE
∣∣∣
weight ℓ

=
(n+ ℓ+ 2)(n− ℓ)

4
(65)

H2

2
· vi =

(2i− n)2

2
· vi ⇒ H2

2

∣∣∣
weight ℓ

=
ℓ2

2
(66)

This gives us another proof of C|weight ℓ = (n+ℓ)(n−ℓ+2)
4 + (n+ℓ+2)(n−ℓ)

4 + ℓ2

2 = n(n+2)
2 , ∀ℓ.
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5.5

Let us finally present the character theory of sl2, which will give us a very elegant way to determine
the numbers n1, . . . , nk in (58). Specifically, for a finite-dimensional representation with weight
decomposition (59), we define its character as

χV =
∑
ℓ∈Z

(dimVℓ)t
ℓ

It is easy to check that the character satisfies the properties

χV⊕V ′ = χV + χV ′ (67)

χV⊗V ′ = χV χV ′ (68)

χV ∨ = χV (69)

with respect to direct sum, tensor product and dual representations (see (30), (31), (32)). Moreover,
the explicit description of the weight spaces of L(n) in (60) shows that

χL(n) =
tn+1 − t−n−1

t− t−1
(70)

By (67), the character of an arbitrary finite-dimensional representation V that decomposes as (58)
would be

χV =

k∑
i=1

tni+1 − t−ni−1

t− t−1

and it is easy to see that one can extract the set {n1, . . . , nk} from χV . Thus, the decomposition
(58) is unique up to reordering the summands, and is completely determined by χV . This allows
us to prove the following formula for all m ≥ n, known as the Clebsch-Gordan rule

L(m)⊗ L(n) ∼= L(m+ n)⊕ L(m+ n− 2)⊕ · · · ⊕ L(m− n+ 2)⊕ L(m− n) (71)

simply by showing that the left and right-hand sides have the same character (use (67) and (68)).
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Lecture 6
6.1

We will now systematically study Lie algebras g and their representations

g ↷ V (72)

First of all, while the notion of Lie algebra representations may seem strange at first (for any x ∈ g
you get a linear transformation ϕx : V → V such that

ϕ[x,y] = ϕx ◦ ϕy − ϕy ◦ ϕx

for all x, y ∈ g), it is actually a particular case of the familiar notion of an algebra representation.

Definition 10. Let g be a Lie algebra over a field K. Make the vector space

Tg = K
⊕

g
⊕

g⊗ g
⊕

g⊗ g⊗ g
⊕

. . .

into an algebra (i.e. a ring with K inside) via concatenation of tensors. Then the quotient

Ug = Tg
/(

x⊗ y − y ⊗ x− [x, y]
)
x,y∈g

(73)

is called the universal enveloping algebra of g.

Note that in the right-hand side of (73), we factor by the two-sided ideal consisting of linear
combinations of tensors

t1 ⊗ x⊗ y ⊗ t2 − t1 ⊗ y ⊗ x⊗ t2 − t1 ⊗ [x, y]⊗ t2 (74)

for any tensors t1, t2 ∈ Tg and any x, y ∈ g. The effect this has on Ug is to ensure that [x, y]
is identified with the commutator x ⊗ y − y ⊗ x in all formulas. While the construction of the
universal enveloping algebra might seem a little dry, prove by yourself the fact that (72) is a Lie
algebra representation if and only if

Ug ↷ V

is an algebra module, i.e. we have for all z ∈ Ug a linear transformation ϕz : V → V such that

ϕzw = ϕz ◦ ϕw and ϕ1 = IdV

6.2

In general, quotients of non-commutative algebras such as (73) are quite badly behaved, e.g. they
could have zero divisors. However, this is not true for universal enveloping algebras of Lie algebras
due to an important structural result known as the Poincaré-Birkhoff-Witt (PBW) theorem. In a
nutshell, this theorem starts from a K-basis

x1, . . . , xn (75)

of g as a vector space, and claims that the symbols

xa11 . . . xann = x1 ⊗ · · · ⊗ x1︸ ︷︷ ︸
a1 factors

⊗x2 ⊗ · · · ⊗ x2︸ ︷︷ ︸
a2 factors

⊗ · · · ⊗ xn ⊗ · · · ⊗ xn︸ ︷︷ ︸
an factors

(76)

give rise to a basis of Ug, as a1, . . . , an range over the non-negative integers.
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Theorem 10. We have a vector space isomorphism

Ug =
∞⊕

a1,...,an=0

K · xa11 . . . xann (77)

Let us show that the symbols xa11 . . . xann span Ug (the fact that they are linearly independent is
more difficult, and we will not prove it). By definition, Ug is spanned by tensors of the form
xi1 ⊗ · · · ⊗ xik where 1 ≤ i1, . . . , ik ≤ n. We are trying to prove the fact that any such tensor can
be “ordered” so as to have i1 ≤ · · · ≤ ik. If at some point we have is > is+1, we apply the equality(

· · · ⊗ xis ⊗ xis+1 ⊗ · · ·
)
=

(
· · · ⊗ xis+1 ⊗ xis ⊗ · · ·

)
+

(
· · · ⊗ [xis , xis+1 ]⊗ · · ·

)
One can re-express the Lie bracket [xis , xis+1 ] as a linear combination of xj ’s, and note that the
right-most term in the above expression has k − 1 tensor factors. Thus, after finitely many such
steps, any tensor xi1 ⊗ · · · ⊗ xik can be written as a linear combination of ordered tensors.

Note that the symbols (76) run over a basis of the symmetric algebra

Sg = K
⊕

g
⊕

S2g
⊕

S3g
⊕

. . .

Therefore, (77) is an isomorphism of vector spaces

Ug ∼= Sg (78)

However, we note that (78) is not an isomorphism of graded vector spaces. Indeed, while Sg and
Tg are graded algebras (with Sng and g⊗n in degree n), the quotient Ug is not graded because
we set the degree 2 element x ⊗ y − y ⊗ x equal to the degree 1 element [x, y]. However, Ug is a
filtered algebra, i.e. there exists a sequence of subspaces

U0g ⊂ U1g ⊂ · · · ⊂ Ung ⊂ · · · ⊂ Ug such that Ug =

∞⋃
n=0

Ung

such that Ukg · Uℓg ⊆ Uk+ℓg. Indeed, the natural choice is to define Ukg as the image of ⊕k
i=0g

⊗i

in the quotient (73), which is a good idea because any commutation relation between ≤ k tensor
factors will also involve ≤ k tensor factors.

Proposition 10. For any x ∈ Ukg and y ∈ Uℓg, we have

xy − yx ∈ Uk+ℓ−1g

Therefore, the induced associated graded algebra

gr Ug =

∞⊕
n=0

Ung
/
Un−1g

is commutative.
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Proof. Assume x = x1 ⊗ · · · ⊗ xk and y = y1 ⊗ · · · ⊗ yℓ. Then the commutator xy − yx equals

x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yℓ − y1 ⊗ · · · ⊗ yℓ ⊗ x1 ⊗ · · · ⊗ xk =

=
k∑
i=1

ℓ∑
j=1

x1 ⊗ · · · ⊗ xi−1 ⊗ y1 ⊗ · · · ⊗ yj−1 ⊗
(
xi ⊗ yj − yj ⊗ xi

)
︸ ︷︷ ︸

=[xi,yj ]

⊗yj+1 ⊗ · · · ⊗ yℓ ⊗ xi+1 ⊗ · · · ⊗ xk

which is clearly in Uk+ℓ−1g.

With Proposition 10 in mind, we can upgrade the Poincaré-Birkhoff-Witt theorem to the existence
of an isomorphism of graded algebras

gr Ug ∼= Sg (79)

which sends xi1 ⊗ · · · ⊗ xik to xi1 . . . xik . In particular, this shows that the natural composition

g ↪→ Tg↠ Ug (80)

is injective, which is not obvious by the mere fact that Ug is a quotient of Tg by a two-sided ideal.

Example 5. When g = sl2, the universal enveloping algebra is quite simple

Usl2 = K
〈
E,F,H

〉/
(HE = E(H + 2), HF = F (H − 2), EF − FE = H)

This allows us to construct numerous representations of sl2, such as for any λ ∈ K

M(λ) = K[F ] = K⊕KF ⊕KF 2 ⊕ . . . (81)

via E · 1 = 0, H · 1 = λ and F acting by multiplication. The rest of the action is determined by the
defining relations of Usl2. The above infinite-dimensional representation has weights λ, λ− 2, λ−
4, . . . , in stark contrast with finite-dimensional representations, which we have seen have weights
which are all integers and symmetric around 0. In Lecture 13, we will see that (81) is an example
of a Verma module.

6.3

We will now introduce the natural Lie algebra versions of solvable and nilpotent groups, respectively.
Note that a Lie algebra g is called abelian if its Lie bracket is identically 0. The definitions in the
present Lecture apply to any ground field K.

Definition 11. A Lie algebra g is called solvable if it has a chain of Lie subalgebras

0 = g0 ⊂ g1 ⊂ · · · ⊂ gk = g

such that gi−1 is an ideal in gi and gi/gi−1 is abelian for all i ∈ {1, . . . , k}.
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As in group theory, Definition 11 may be re-expressed in terms of commutators. Given subspaces
A,B of a Lie algebra g, we will write

[A,B] = span
{
[a, b]

∣∣∣a ∈ A, b ∈ B
}

In particular, the derived (or commutator) Lie subalgebra of g is

Dg = [g, g] (82)

Then it is a well-known fact, which we invite you to prove, that g is solvable if and only if the
so-called derived series

g ⊇ Dg ⊇ D(Dg) ⊇ . . . (83)

eventually terminates with the 0 subalgebra.

Definition 12. A Lie algebra g is called nilpotent if it has a chain of ideals

0 = g0 ⊂ g1 ⊂ · · · ⊂ gk = g

such that [g, gi] ⊂ gi−1 for all i ∈ {1, . . . , k}.

It is a well-known fact, which we invite you to prove, that g is nilpotent if and only if the series

g ⊇ [g, g] ⊇ [g, [g, g]] ⊇ . . .

eventually terminates with the 0 subalgebra. Since a Lie algebra is abelian if and only if [g, g] = 0,
we conclude that

abelian ⊂ nilpotent ⊂ solvable

holds in the world of Lie algebras as it did in the case of groups. The fundamental example of
abelian, nilpotent and solvable Lie algebras are

h =
{
diagonal matrices

}
(84)

n =
{
strictly upper triangular matrices

}
(85)

b =
{
upper triangular matrices

}
(86)

respectively, all regarded as Lie subalgebras of gln with the usual Lie bracket commutator. It is a
good idea to check the above statements. The following result is proved just like in basic group
theory.

Proposition 11. Any subalgebra or quotient of an abelian / nilpotent / solvable Lie algebra is
abelian / nilpotent / solvable. Conversely, if we have an ideal

i ⊆ g

such that i and g/i are solvable, then g is solvable (in order to have this property for nilpotent Lie
algebra, we would need to further assume that i lies in the center of g).

30



6.4

For the remainder of this Lecture, we assume that the ground field K is algebraically closed. It is
well-known that a commutative family of endomorphisms of a finite-dimensional vector space can
be simultaneously triangularized. In particular, if an abelian Lie algebra g acts on a representation
V , there exists a basis of V so that the action is given by upper triangular matrices. It turns out
that the same is true for solvable Lie algebras, as in the following important result called Lie’s
theorem.

Theorem 11. If a solvable Lie algebra g acts on a finite-dimensional representation V (over an
algebraically closed field), then there exists a basis of V so that the action is given by upper triangular
matrices.

Proof. Let us write {ϕx}x∈g ∈ End(V ) for the operators that comprise the action. It suffices to
show that all the ϕx have a joint eigenvector v ∈ V , because then one can obtain the desired result
by induction on dimV (we can obtain a full flag of subspaces of V which is preserved by the ϕx by
taking a full flag of subspaces of V/Kv and appending Kv to it). We will prove the aforementioned
claim by induction on dim g. Since g is solvable, we have

Dg ⊊ g

so the quotient g/Dg is a non-zero abelian Lie algebra. Therefore, any codimension 1 subspace in
g/Dg is an ideal, and by the correspondence theorem we conclude that there exists a codimension
1 ideal i ⊂ g. By Proposition 11, i is a solvable Lie algebra, and so the induction hypothesis implies
that there exists 0 ̸= v ∈ V such that

xv = λ(x)v (87)

for all x ∈ i, where λ is a linear functional on i. Pick y ∈ g\i and consider the subspace

W = span
{
v, yv, y2v, . . .

}
For any x ∈ i and k ≥ 0, you can prove the elementary identity

xykv = ykxv +

k∑
i=1

(
k

i

)
yk−i [. . . [[x, y], y], . . . , y]︸ ︷︷ ︸

i y’s

v (88)

Since all the commutators in the right-hand side lie in i, the right-hand side of the expression above
lies in W ; we conclude that the action of any x ∈ i preserves W . Even more so, x acts upper
triangularly in the basis v, yv, . . . , ydimW−1v of W , with λ(x) on the diagonal. Therefore,

tr (x|W ) = λ(x) dimW

for all x ∈ i. However, y also preserves W , and [i, y] ⊆ i on account of i being an ideal of g. The
fact that commutators have trace 0 implies that

λ([x, y]) = 0 (89)

for all x ∈ i. Let us now consider the non-zero subspace

W ′ =
{
v ∈ V

∣∣∣x · v = λ(x)v, ∀x ∈ i
}
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for the same linear functional as in (87). For any x ∈ i, w ∈W ′ and note that

x · (y · w) = y · (x · w) + [x, y] · w = λ(x)y · w + λ([x, y]) · w

Since the second term in the right-hand side vanishes by (89), we conclude that y ·w ∈W ′. Thus,
the action of y preserves W ′, so it has an eigenvector w′ ∈ W ′. This w′ will be an eigenvector for
the whole of g = i⊕Ky.

Corollary 3. All irreducible finite-dimensional representations (over an algebraically closed field)
of a solvable Lie algebra are one-dimensional.
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Lecture 7
7.1

In the last lecture, we saw that if V is a representation of a solvable Lie algebra g over an alge-
braically closed field K, then the action homomorphism

g → gl(V )

lands in the Lie subalgebra b ⊂ gl(V ) of upper triangular matrices (with respect to some basis).
The analogous result for nilpotent Lie algebras and strictly upper triangular matrices is false (for
example, V being a one-dimensional representation of a one-dimensional Lie algebra), but we have
the following replacement. In what follows, we require char K = 0, but K needn’t be algebraically
closed.

Theorem 12. If a Lie algebra g acts on a finite-dimensional representation V by nilpotent opera-
tors, then there exists a basis of V so that the action is given by strictly upper triangular matrices.

Proof. It suffices to show that all the operators {ϕx}x∈g that comprise the action on V annihilate
a non-zero vector v ∈ V , because then one can obtain the desired result by induction on the dimV
(we can obtain a full flag of subspaces of V which is preserved by the ϕx by taking a full flag of
subspaces of V/Kv and appending Kv to it). We will prove that the action of all x ∈ g annihilate
a common non-zero vector by induction on dim g. First of all, we may replace g by the image of
the action homomorphism

g → gl(V )

which allows us to assume g ⊆ gl(V ). Then let us assume that

g has a codimension 1 ideal i (90)

By the induction hypothesis for i, the subspace

W =
{
v ∈ V

∣∣∣x · v = 0, ∀x ∈ i
}

is non-zero. Fix y ∈ g\i. Because

x · (y · w) = y · (x · w) + [x, y]︸ ︷︷ ︸
∈i

·w = 0

for all x ∈ i and w ∈W , we conclude that the action of y sends W to itself. However, the action of
y is via a nilpotent operator. Since a nilpotent operator always annihilates a non-zero vector, we
conclude that there exists 0 ̸= w ∈ W such that y · w = 0. As x · w = 0 for all x ∈ i, we conclude
that the action of all elements of g annihilates w.

Let us now explain why there exists a codimension 1 ideal i ⊂ g, thus justifying the assumption
(90). We choose i to be maximal proper Lie subalgebra of g, and assume that codim i > 1. Consider
the representation

i ↷ g/i, x · (y mod i) = ([x, y] mod i)

The action above is by nilpotent operators, being a block of the action ad : i ↷ g, which is by
nilpotent operators due to the assumption g ⊆ gl(V ) (there is a subtlety to prove here: if X ∈ gl(V )
is a nilpotent operator, show that adX : gl(V ) → gl(V ) is nilpotent, i.e. adnX = 0 for some n). The
inductive hypothesis in the representation above implies that there exists y ∈ g\i such that [i, y] ⊆ i.
This implies that i⊕Ky is a larger proper Lie subalgebra than i, which provides a contradiction.
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Theorem 12 implies the following result, commonly known as Engel’s theorem.

Corollary 4. A Lie algebra g is nilpotent if and only if adx ∈ End(g) is nilpotent for all x ∈ g.

The “only if” implication is straightforward. For the “if” implication, Theorem 12 applied to the
adjoint representation gives us a flag of subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = g

so that adx(Vi) ⊆ Vi−1 for all i. Therefore, for any x1, . . . , xn ∈ g, we have

0 = adx1 ◦ adx2 ◦ · · · ◦ adxn−1(xn) = [x1, [x2, . . . , [xn−1, xn] . . . ]]

which precisely means that [g, [g, . . . , [g, g] . . . ]]︸ ︷︷ ︸
n copies of g

= 0.

7.2

By analogy with the situation of groups, we say that a Lie algebra is simple if it has no proper
ideals, and it is not abelian. The reason for the latter restriction is that it ensures that

[g, g] = g (91)

as the ideal [g, g] cannot be 0 if g is not abelian. As a consequence, we have:

Corollary 5. Any one-dimensional representation of a simple Lie algebra is 0.

The following notion is a more general version of simplicity.

Definition 13. A Lie algebra is called semisimple if it has no solvable ideals other than 0.

Note that any simple Lie algebra is also semisimple. The reason is that its only ideals are 0 and g,
but g could not be solvable, because otherwise [g, g] would be a proper ideal. The following notion,
that of radical of a Lie algebra, measures how far a general Lie algebra is from being semisimple.

Proposition 12. In any Lie algebra g, the sum of two solvable ideals (i.e. the smallest ideal
containing the two) is solvable. Therefore, there exists a maximal solvable ideal called the radical

rad(g) ⊆ g

and g/rad(g) is semisimple.

Proof. Let i and j be solvable ideals of g. The natural isomorphism

(i+ j)/i ∼= j/(i ∩ j)

(itself an analogue of the second isomorphism theorem for Lie algebras) realizes i+ j as an extension
of the solvable Lie algebras i and a quotient of j. By Proposition 11, i+ j is solvable. Therefore, the
maximal solvable ideal rad(g) must be defined as the sum of all solvable ideals. The semisimplicity
of g/rad(g) follows from the maximality of rad(g) and the correspondence Theorem 2 (complete
this argument).
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The definition of the radical entails the fact that any Lie algebra admits a short exact sequence

0 → rad(g)
ι−→ g

π−→ gss → 0

where gss is semisimple. In fact, an important result called Levi’s theorem states that the above
short exact sequence actually splits if the ground field has characteristic 0, i.e.

∃ψ : gss → g s.t. π ◦ ψ = Idgss (92)

This means that gss can be perceived as a subalgebra of g, although not as an ideal.

7.3

By generalizing Corollary 3, any irreducible representation (over an algebraically closed field)

g ↷ V

has the property that rad(g) acts by scalars. Proof: as in the proof of Theorem 11, the subspace

W =
{
v ∈ V

∣∣∣x · v = λ(x)v,∀x ∈ rad(g)
}

is non-zero for some linear functional λ on rad(g). However, you can prove by analogy with Theorem
11 that any y ∈ g\rad(g) also sends W to W ; because V is irreducible, then V =W . As the ideal

[g, rad(g)] ⊆ g (93)

acts on irreducible representations by 0, it is customary to quotient out this ideal from g. This
naturally leads to the following.

Definition 14. A Lie algebra g is called reductive if rad(g) = z(g).

The defining condition of a reductive Lie algebra is actually equivalent to rad(g) ⊆ z(g) ⇔
[g, rad(g)] = 0, because the opposite inclusion z(g) ⊆ rad(g) is true in any Lie algebra (prove this
claim). With this in mind, Levi’s theorem (92) implies that a reductive Lie algebra splits as

g ∼= z(g)⊕ gss

In this case, gss is actually an ideal of g, and the direct sum in the RHS is in the sense of Definition
4. Thus, we see that reductive Lie algebras are obtained from semisimple ones by adding a center.
The main example is (38), in which the general linear Lie algebra (reductive) is the direct sum of
the special linear Lie algebra (semisimple, as we will shortly see) and a one-dimensional center.

7.4

Semisimple and reductive Lie algebras can be described in terms of their bilinear forms, as per the
following notion.
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Definition 15. If g is a Lie algebra over a field K, then a symmetric bilinear form

g× g
(·,·)−−→ K

is called invariant if
([x, y], z) + ([x, z], y) = 0 (94)

for all x, y, z ∈ g. We will write s.i.b.f. for a symmetric invariant bilinear form.

Condition (94) is nice because the orthogonal complement of an ideal with respect to a s.i.b.f. is
also an ideal. The following is a great source of s.i.b.f.’s (we leave this claim as an exercise to you).

Proposition 13. For any representation g ↷ V , the assignment

(x, y)V = trV (ϕx ◦ ϕy) (95)

is a s.i.b.f.

For example, if V is the usual n-dimensional representation of gln, then (X,Y )V = tr(XY ). For
a general Lie algebra g, a special role is played by setting V to be the adjoint representation, in
which case the s.i.b.f.

(x, y)g = trg(adx ◦ ady) (96)

is called the Killing form.

Theorem 13. If the s.i.b.f. (95) is non-degenerate for some representation V , then g is reductive.

Proof. There exists a flag of subrepresentations

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V

with Vi/Vi−1 irreducible for all i ∈ {1, . . . , k}. The fact that the matrices ϕx are all block upper
triangular with respect to the flag above implies that

(x, y)V =

k∑
i=1

(x, y)Vi/Vi−1

for all x, y ∈ g. If we take x ∈ [g, rad(g)], then we have already seen in (93) that such x act by 0
in all irreducible representations, and thus lie in the kernel of (·, ·)V . Since the latter is assumed
non-degenerate, this implies x = 0, as desired.

As a consequence of this Theorem, all the matrix Lie algebras that we encountered in this course
(gln, sln, on, sp2n, u(n), su(n)) are reductive, which you can prove by showing that the s.i.b.f. given
by their usual matrix representation is non-degenerate.
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7.5

We have just seen that the s.i.b.f.’s (95) give a criterion for a Lie algebra being reductive. We
will now see that the Killing form is even more powerful, as evidenced by the following result,
typically called Cartan’s criterion of solvability/semisimplicity, which holds over any field
of characteristic 0.

Theorem 14. (a) A Lie algebra g is solvable if and only if

([x, y], z)g = 0, ∀x, y, z ∈ g

(b) A Lie algebra is semisimple if and only if its Killing form is non-degenerate.

We will prove Theorem 14 using certain tools that will be developed in next lecture. But let us
apply it to gln = scalar matrices⊕ sln: clearly scalar matrices are in the kernel of the Killing form,
which shows that gln is not semisimple. On the other hand, if we let V be the usual n-dimensional
representation of gln, we have

(Eij , Ei′j′)V = trV (EijEi′j′) = δi′jδij′

which is clearly non-degenerate. Thus, we conclude that gln is reductive. The bilinear form above
is also non-degenerate for sln, but because the latter Lie algebra is simple, we actually have the
following result.

Lemma 2. Any two non-degenerate s.i.b.f.’s on a simple Lie algebra (over an algebraically closed
field) are proportional.

Proof. It is easy to check that any non-degenerate s.i.b.f. on a Lie algebra g gives an isomorphism

g ∼= g∗

of representations of the Lie algebra g (where the LHS is the adjoint representation and the RHS
is the dual of the adjoint representation). The fact that g is simple is equivalent to the adjoint
representation being irreducible, and then the fact that any two isomorphisms g ∼= g∗ differ by a
constant multiple is a consequence of Schur’s Lemma.

7.6

Let us give without proof certain connections between the Killing form and real forms of complex
Lie algebras, as in Lecture 4.

Theorem 15. (a) For any compact real Lie group G, its Lie algebra g is reductive and its Killing
form is negative-semidefinite (the kernel of the form is just z(g)).

(b) As a partial converse, if g is a real Lie algebra with a negative-definite Killing form, then any
connected Lie group with Lie algebra g is compact.
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The situation of real Lie algebras with positive-definite Killing form is much simpler and less
interesting than the above Theorem: there are no such Lie algebras except 0. To see this, let g be
a real Lie algebra, and pick an orthonormal basis

g =

n⊕
i=1

R · xi

for the Killing form. If we let γkij be the structure constants for the Lie bracket, i.e.

[xi, xj ] = adxi(xj) =
∑
k

γkijxk

then we have for all i ∈ {1, . . . , n}

(xi, xi)g = trg(adxi ◦ adxi) =
n∑

j,k=1

γkijγ
j
ik (97)

However, the identity
γkij = ([xi, xj ], xk)g = −([xi, xk], xj)g = −γjik (98)

implies that the right-hand side of (97) is non-positive, which contradicts the positive-definiteness
of the Killing form.
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Lecture 8
8.1

Semisimple Lie algebras have two important features: complete reducibility of representations, and
Jordan decompositions, both of which we will now state and prove. The ground field K must have
characteristic 0 throughout the entire lecture.

Theorem 16. If V is any finite-dimensional representation of a semisimple Lie algebra g, then
for any subrepresentation W ⊂ V there exists another subrepresentation W ′ ⊂ V such that

V =W ⊕W ′ (99)

After repeated applications of this result, we conclude that any representation of a semisimple Lie
algebra is a direct sum of irreducible representations, which is called complete reducibility.

The semisimplicity assumption is key, as we have already seen in (34) an example where complete
reducibility fails. In fact, that example failed because the action was given in terms of matrices
which are not diagonalizable, which leads us into a discussion of Jordan decompositions. Let us
start with the following result, which we leave to you.

Proposition 14. A linear transformation f : V → V is called semisimple if for any subspace
W ⊂ V preserved by f there exists another subspace preserved by f such that

V =W ⊕W ′

If V is a finite-dimensional vector space over an algebraically closed field K, then f is semisimple
if and only if f is diagonalizable.

The well-known Jordan decomposition basically says that any linear transformation f on a finite-
dimensional vector space can be uniquely decomposed as

f = fss + fn (100)

where fss is semisimple, fn is nilpotent, and fssfn = fnfss. Moreover, fss and fn are polynomials
in f with zero constant term. We will soon show that the decomposition (100) extends uniformly
from individual linear transformations to elements of semisimple Lie algebras, as follows.

Theorem 17. If g is a semisimple Lie algebra, then any x ∈ g admits a unique decomposition

x = xss + xn (101)

such that [xss, xn] = 0, and xss (respectively xn) acts as a semisimple (respectively nilpotent)
operator in any representation of g. This is true in particular in the adjoint representation, so

(adx)ss = adxss and (adx)n = adxn (102)

One calls (101) the abstract Jordan decomposition.

Formula (102) is very strong. For example, we claim that it implies that

[x, y] = 0 ⇔ [xss, y] = [xn, y] = 0 (103)

for any x, y ∈ g. To see this, the fact that (adx)ss = adxss implies that the latter operator is
a polynomial in adx with zero constant term. If [x, y] = 0, then the aforementioned polynomial
annihilates y, which implies that [xss, y] = 0 (hence also [xn, y] = 0).

39



8.2

In the remainder of this Lecture, we will prove the results above. For technical reasons, we will
start with the Cartan criteria of solvability and semisimplicity.

Proof. of Theorem 14: (a) Since a Lie algebra over K is solvable if and only if its extension over
the algebraic closure of K is solvable (the property of (83) terminating with 0 is unchanged by field
extension), then we will assume the ground field is algebraically closed. In this case, the “only if”
statement is an easy case of Lie’s theorem 11 for the adjoint representation: indeed, the fact that
adz is upper triangular for all z ∈ g implies that ad[x,y] is strictly upper triangular for all x, y ∈ g.
Therefore, ([x, y], z)g is the trace of a strictly upper triangular matrix, and thus equal to 0.

Lemma 3. If a Lie subalgebra a ⊆ gln has the property that

tr(xy) = 0, ∀x, y ∈ a (104)

then a is solvable.

Let us first deduce the “if” statement from Lemma 3. By Proposition 11, it suffices to show that
g/z(g) is solvable. So by replacing g with g/z(g), we may assume that the adjoint representation
provides an injection

g ↪→ End(g)

Therefore, the Lie subalgebra a = [g, g] satisfies the hypotheses of Lemma 3, and is thus solvable.
Since g/a is abelian and thus solvable, then Proposition 11 implies that g is solvable.

It remains to prove Lemma 3. It suffices to show that [x, y] is a nilpotent matrix for all x, y ∈ a,
because then the first blue claim of Lecture 7 and Corollary 4 would imply that [a, a] is nilpotent
(hence solvable, hence Proposition 11 would imply that a is solvable). Thus, let us pick arbitrary
x, y ∈ a and assume that the eigenvalues of [x, y] are λ1, . . . , λn counted with multiplicities (we are
still working over the algebraic closure of the ground field). Our goal is to show that λ1 = · · · =
λn = 0, so assume that at least one of the λi’s is non-zero. Then it is easy to see that there exists
a Q-linear functional

ζ : spanQ (λ1, . . . , λn) → Q

such that
n∑
i=1

λiζ(λi) ̸= 0 (105)

(if this ζ seems strange to you, then just assume we are working over C and we replace ζ(λi) by λi
from now on). Because ζ is linear, there exists an interpolation polynomial P (t) such that

P (λi − λj) = ζ(λi)− ζ(λj) (106)

for all i, j ∈ {1, . . . , n}. Let

A = [x, y]ss = diag(λ1, . . . , λn) ⇒ adA = diag(λi − λj)1≤i,j≤n

and B = diag(ζ(λ1), . . . , ζ(λn)). Therefore, (106) implies that

adB = diag(ζ(λi)− ζ(λj))1≤i,j≤n = P (adA)
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Moreover, as adA = ad[x,y]ss =
(
ad[x,y]

)
ss
, we conclude that adA is itself a polynomial in ad[x,y].

This implies that adB = Q(ad[x,y]) for some polynomial Q(t), and thus

adB(a) = Q(ad[x,y])(a) ⊆ a

With this in mind, we have for all x, y ∈ a

n∑
i=1

λiζ(λi) = tr(AB) = tr([x, y]B) = tr(adB(x)y) = 0

with the last equality being precisely the hypothesis (104). We have therefore contradicted (105).

(b) For the “only if” statement, let us consider the kernel i of the Killing form of a semisimple Lie
algebra g. By (94), i is an ideal of g. Moreover, for any x, y, z ∈ i

ad[x,y] ◦ adz

calculated in g is a block matrix, with one of the blocks being given by the same composition
but calculated in i, and the other block being 0. Thus, the fact that ([x, y], z)g = 0 implies that
([x, y], z)i = 0, for all x, y, z ∈ i. Part (a) implies that i is solvable, and by the definition of
semisimplicity we conclude that i = 0 (i.e. the Killing form is non-degenerate).

Let us now prove the “if” statement, which relies on the following claim (which we leave to you,
using the fact the last non-zero term in the derived series of rad(g) would be an abelian ideal of g).

Lemma 4. A Lie algebra g is semisimple if and only if it has no non-zero abelian ideals.

Since any abelian ideal i of a Lie algebra g would lie in the kernel of the Killing form (because
adx sends g to i and i to 0 for all x ∈ i), then the non-degeneracy of the Killing form implies the
non-existence of abelian ideals other than 0.

8.3

Cartan’s criterion for semisimplicity has a number of interesting consequences. For one thing, a
real Lie algebra is semisimple if and only if its complexification is semisimple (note that this does
not hold for simple Lie algebras). More important is the following characterization of Lie algebras.

Lemma 5. A Lie algebra g is semisimple if and only if it is a direct sum of simple Lie algebras.

Proof. We already showed that simple Lie algebras are semisimple, and so their Killing forms are
non-degenerate by Theorem 14. Since the Killing form of a direct sum of Lie algebras is the sum
of the Killing forms of its constituents, we conclude that any direct sum of simple algebras has
non-degenerate Killing form, hence is semisimple by Theorem 14.

For the opposite direction, consider a semisimple Lie algebra g which is not simple. Therefore, if
has a proper ideal i ⊂ g. If we let j be the complement of i with respect to the Killing form, then
show that the non-degeneracy of the latter implies that

g = i⊕ j

and the invariance of the Killing form implies that j is an ideal. Therefore, the decomposition above
is a direct sum of Lie algebras, in the sense of Definition 4. Since i and j are semisimple Lie algebras
in turn, we can repeat this algorithm by induction on dim g.
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As a consequence of Lemma 5, we have that

[g, g] = g (107)

for any semisimple Lie algebra g, because the property above holds for simple Lie algebras (we saw
this in (91)) and it is preserved under direct sums. Therefore, we conclude the following.

Corollary 6. Any one-dimensional representation of a semisimple Lie algebra is 0.

8.4

We will now prove Theorem 16 on complete reducibility. The following notion is key.

Proposition 15. For any non-degenerate s.i.b.f. (·, ·) on a Lie algebra g, its Casimir element is
defined as

C =
∑
i

xi ⊗ xi ∈ Ug (108)

where {xi}, {xi} run over dual bases of g with respect to the form. Then C ∈ Z(Ug).

By basic algebra, C does not depend on the choice of dual bases {xi}, {xi}. If (·, ·)g is the Killing
form, then the corresponding Cg is usually called the Casimir element of g. The potential abuse of
terminology is basically non-existent for a simple Lie algebra, because Lemma 2 implies that any two
Casimir elements are proportional. Because any representation g ↷ V is also a representation of
Ug, the Casimir element acts in V ; we have already encountered this operator for sl2 in Subsection
5.4.

Proof. of Proposition 15: Let us assume xi = xi is an orthonormal basis with respect to the given
symmetric invariant bilinear form. If we let

[xi, xj ] =
∑
k

γkijxk

then we have γjik = −γjki
(98)
= γikj = −γijk. Therefore, we have for any k

C ⊗ xk − xk ⊗ C =
∑
i

(
[xi, xk]⊗ xi + xi ⊗ [xi, xk]

)
=

∑
i,j

γjik

(
xj ⊗ xi + xi ⊗ xj

)
= 0

8.5

Because any Casimir element is central, Schur’s Lemma implies that it acts by a constant in any
irreducible representation. More specifically, for an irreducible representation g ↷ V , the Casimir
element defined with respect to the symmetric invariant bilinear form (95) acts by the constant

dim g

dimV
(109)

(note that this requires the form (·, ·)V to be non-degenerate; if on the other hand this form has a
non-trivial kernel i ⊂ g, then we simply replace g by g/i in (108)). Even more generally, it is a fact
that any Casimir element of a semisimple Lie algebra acts by a non-zero scalar in any irreducible
finite-dimensional representation, but we will not need this.
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Proof. of Theorem 16: Let us first consider the case when W ⊂ V has codimension 1. If W is
irreducible, then the discussion above shows that there is a Casimir element C which acts by a
non-zero constant on W . By Corollary 6, the action of g on the one-dimensional quotient V/W is
0, so we conclude that C sends V to W . Thus, W ′ = Ker C|V is non-empty, and because C|W is a
non-zero scalar, we conclude that W ′ is one-dimensional and complementary to W . The fact that
W ′ is a subrepresentation follows from

C · (x · v) = x · (C · v) ⇒ x ·W ′ ⊆W ′

for all x ∈ g, where the first equality is due to the fact that C is central. Having proved the
complete reducibility when W is irreducible (but still codimension 1 inside V ), let us now prove
the case of general W (but still codimension 1 inside V ) by induction on dim V . If W is not
irreducible, then we may consider a maximal proper subrepresentation W̄ ⊊ W (which exists due
to finite-dimensionality) and simply run the discussion above for the representation g ↷ V/W̄ and
its codimension 1 subrepresentation W/W̄ . We obtain a subrepresentation W̄ ⊂ W̄ ′ ⊂ V such that

V/W̄ =W/W̄ ⊕ W̄ ′/W̄

with W̄ having codimension 1 inside W̄ ′. Repeating the argument above gives us a decomposition
W̄ ′ = W̄ ⊕W ′ for some one-dimensional subrepresentation W ′ ⊂ W̄ ′, and so V = W ⊕W ′ is the
required decomposition in (99).

Having proved the Theorem for any subrepresentation W of codimension 1 in V , let us consider an
arbitrary subrepresentation W ⊂ V and define

Ṽ =
{
f : V →W

∣∣∣f |W = scalar
}

W̃ =
{
f : V →W

∣∣∣f |W = 0
}

We may make Ṽ into a representation of g via (x · f)(v) = x · f(v)− f(x · v), and it is clear that

x · Ṽ = W̃

for all x ∈ g. As W̃ has codimension 1 inside Ṽ , the first part of this proof implies the existence of

f ∈ Ṽ \W̃ , s.t. x · f = λ(x)f, ∀x ∈ g

where λ : g → K is some linear functional. Then, f |W = α·IdW for some non-zero α, soW ′ = Ker f
is a complementary subspace to W inside V . Moreover, W ′ is a subrepresentation because

f(v) = 0 ⇒ f(x · v) = x · f(v)− (x · f)(v) = x · f(v)− λ(x)f(v) = 0

8.6

Let us now prove Theorem 17 on the abstract Jordan decomposition in semisimple Lie algebras.
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Proof. of Theorem 17: We begin by claiming that for any semisimple subalgebra

g ⊆ gl(V )

the semisimple and nilpotent parts of any element x ∈ g (regarded as linear transformations V → V ,
see (100)) also lie in g. Applying this result to the faithful adjoint representation

g ↪→ End(g)

(faithfulness, i.e. the injectivity of the Lie algebra homomorphism above, is due to semisimple Lie
algebras having trivial center) allows us to construct a decomposition

x = xss + xn (110)

in g such that (102) holds. Let us now consider an arbitrary representation g ↷ V and the
associated Lie algebra homomorphism

g
ϕ−→ gl(V )

We want to show that for any x ∈ g, we have

ϕ(x)ss = ϕ(xss) and ϕ(x)n = ϕ(xn)

i.e. the abstract Jordan decomposition gives rise to the usual Jordan decomposition in V . By
replacing g with Im ϕ (which is also semisimple on account of it being a quotient of a semisimple Lie
algebra) we may regard g as a subalgebra of gl(V ). Then any x ∈ g admits a Jordan decomposition
in the context of linear transformations V → V

x = x′ss + x′n (111)

where the claim at the beginning of the proof establishes the fact that x′ss, x
′
n ∈ g. You have

already shown last week that if y ∈ gl(V ) is nilpotent, then ady is nilpotent; it is also true that if
y ∈ gl(V ) is semisimple, then ady is semisimple (one of the exercises on this week’s exercise sheet
will essentially prove this over an algebraically closed field). Therefore,

adx = adx′ss + adx′n (112)

is a Jordan decomposition in End(gl(V )). Since the semisimple and nilpotent parts of any operator
are polynomials in said operator, then adx′ss and adx′n send g to g. It is easy to see that a diagonal
block of a semisimple/nilpotent linear transformation is also semisimple/nilpotent, and so the
restriction of (112) to g is also a Jordan decomposition. By uniqueness of the latter, we conclude
that adx′ss = adxss and adx′n = adxn as linear transformations of g. Therefore, the faithfulness of
the adjoint representation of a semisimple Lie algebra implies that the decompositions (110) and
(111) coincide, i.e. the abstract Jordan decomposition agrees with the Jordan decomposition in V .

To prove the claim at the beginning of this proof, consider the following Lie subalgebras of gl(V )

� a =
{
f : V → V

∣∣∣[f, g] ⊆ g
}

� bW =
{
f : V → V

∣∣∣f(W ) ⊆W and tr(f |W ) = 0
}
for any g-invariant subspace W ⊂ V
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It is almost obvious to see that

g ⊆ g′ := a
⋂

g-invariant W⊆V
bW

(the fact that any x ∈ g acts on any g-invariant subspace W ⊂ V by a traceless matrix is due to
the fact that g = [g, g] for a semisimple Lie algebra g). Consider the Jordan decomposition (100)

x = xss + xn

of any x ∈ g, where xss, xn : V → V . Because xss and xn are polynomial expressions in x, we have

xss, xn ∈ bW

for any g-invariant W ⊆ V (a little thought is needed to see that xss and xn are traceless on W ).
Moreover, as we showed in the previous paragraph, adx = adxss + adxn is a Jordan decomposition
in End(gl(V )). Therefore, adxss and adxn are polynomial expressions in adx, which implies that

xss, xn ∈ a

Putting the above two displays together implies that

xss, xn ∈ g′ (113)

By the complete reducibility Theorem 16, the adjoint representation of g on g′ decomposes as

g′ = g⊕ S

for some S ⊆ gl(V ). Because g is tautologically an ideal of a, we conclude that g is an ideal of g′,
and so [g, S] = 0. If we decompose V as a direct sum of irreducible representations of g

V = V1 ⊕ · · · ⊕ Vk

then any f ∈ S is on one hand a g-intertwiner, while on the other hand f preserves each Vi and
acts tracelessly on it. By Schur’s lemma, the only option is that any f ∈ S is actually 0 and so
g′ = g. Then (113) implies the claim at the beginning of this proof.

8.7

The Jordan decomposition in the adjoint representation (102) can also be constructed as follows.

Definition 16. A derivation of a Lie algebra g is a linear transformation

ζ : g → g

which satisfies the following version of the Leibniz rule

ζ([y, z]) = [ζ(y), z] + [y, ζ(z)]

for all y, z ∈ g.
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For any x ∈ g, the Jacobi identity implies that

ξx(y) = [x, y] (114)

is a derivation. Such derivations are called inner, and any other derivation is called outer.

Lemma 6. A semisimple Lie algebra only has inner derivations.

Proof. The set Der(g) of derivations of g is itself a Lie algebra, with respect to the Lie bracket

[ζ, ζ ′](x) = ζ(ζ ′(x))− ζ ′(ζ(x))

and it is easy to see that the function

g → Der(g), x⇝ ξx (115)

is a Lie algebra homomorphism. Because a semisimple Lie algebra g has trivial center, the function
above is injective. The fact that

[ξx, ζ] = ξζ(x), ∀ζ ∈ Der(g), x ∈ g (116)

implies that the injection (115) identifies g with an ideal of Der(g). Moreover, this injection identifies
the Killing form on g with the one on Der(g). The non-degeneracy of the Killing form on g means
that we have a direct sum decomposition

Der(g) = g⊕ i

(as in the proof of Lemma 5), where i is an ideal. Because [g, i] = 0, for any ζ ∈ i we have by (116)

ξζ(x) = 0,∀x ∈ g ⇒ ζ(x) = 0, ∀x ∈ g

This shows that i = 0, and so every derivation is inner.

Let us now consider a Lie algebra g over an algebraically closed ground field K, and establish (102).
For any x ∈ g, take the generalized eigenspace decomposition of the operator adx : g → g

g =
⊕
γ∈K

gγ

where
gγ =

{
y ∈ g

∣∣∣(adx − γ · Idg)N (y) = 0 for N ≫ 0
}

Define (adx)ss as the operator which acts on gγ as multiplication by γ. We claim that

ζ : g → g, ζ(y) = (adx)ss(y) (117)

is a derivation. To see this, take any y ∈ gγ and z ∈ gδ, and note that

(adx − (γ + δ) · Idg) ([y, z]) = [(adx − γ · Idg)(y), z] + [y, (adx − δ · Idg)(z)] ⇒
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⇒ (adx − (γ + δ) · Idg)N ([y, z]) =
∑

N1+N2=N

[(adx − γ · Idg)N1(y), (adx − δ · Idg)N2(z)] = 0

if N is large enough. Thus, we conclude that [y, z] ∈ gγ+δ, which immediately implies that (117) is
a derivation. By Lemma 6, ζ = ξxss for some xss ∈ g and thus

(adx)ss = adxss (118)

If we let xn = x− xss, we conclude that

(adx)n = adxn (119)

The fact that xss and xn commute follows from the fact that

0 = [(adx)ss, (adx)n] = [adxss , adxn ] = ad[xss,xn] ⇒ 0 = [xss, xn]

The last implication is due to the fact that the adjoint representation is faithful (has zero kernel)
for semisimple Lie algebras.
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Lecture 9
9.1

Having developed foundational results on semisimple Lie algebras, we will now describe them
explicitly. Throughout the present section, we assume that the ground field is C.

Definition 17. Let g be a semisimple Lie algebra. A Lie subalgebra h ⊂ g is called toral if it is
abelian and consists of semisimple elements.

The standard example of a toral subalgebra is any subspace of the set of diagonal matrices inside
sln. Of course, one can replace the set of diagonal matrices by any conjugate thereof, which would
lead to many more toral subalgebras. Since it is abelian, any toral subalgebra is isomorphic to C⊕n

for some n. The space consists of C-linear functions

h∗ =
{
λ : h → C

}
and it has the same dimension as h. Throughout the present lecture, (·, ·) : g × g → C denotes
an arbitrary symmetric invariant bilinear form, which is non-degenerate (for example the Killing
form).

Proposition 16. For any semisimple Lie algebra g over C, and any toral subalgebra h ⊂ g, we
have a decomposition

g =
⊕
λ∈h∗

gλ (120)

where

gλ =
{
x ∈ g

∣∣∣[h, x] = λ(h)x, ∀h ∈ h
}

(121)

Then we have
[gα, gβ] ⊆ gα+β (122)

for all α, β ∈ h∗, and the non-degenerate form (·, ·) has the property that

gα ⊗ gβ
(·,·)−−→ C (123)

is non-degenerate if α+ β = 0 and is 0 if α+ β ̸= 0.

Proof. The subspaces (120) are the joint eigenspaces of the commuting operators {adx}x∈h on g
(these operators are all semisimple by assumption, hence simultaneously diagonalizable since we
are working over C). Property (122) is an immediate consequence of the Jacobi identity

[h, [x, y]] = [x, [h, y]] + [[h, x], y]

(show that the Jacobi identity is equivalent to the above formula) so if x ∈ gα ⇒ [h, x] = α(h)x
and y ∈ gβ ⇒ [h, y] = β(h)y, then [h, [x, y]] = (α(h) + β(h))[x, y] ⇒ [x, y] ∈ gα+β. As far as the
restricted pairing (123) is concerned, the invariance implies that

α(h)(x, y) = ([h, x], y) = −(x, [h, y]) = −β(h)(x, y)

for any x ∈ gα, y ∈ gβ. This shows that (x, y) ̸= 0 only if α+β = 0. The fact that the case α+β = 0
of the restricted pairing (123) is non-degenerate then follows from the overall non-degeneracy of
the pairing (·, ·).
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9.2

In particular, Theorem 13 applied to the non-degenerate pairing (123) for α = β = 0 implies that
g0 is reductive. Since h is abelian, we have g0 ⊇ h. The following Definition pertains to the opposite
inclusion.

Definition 18. A toral subalgebra h of a complex semisimple Lie algebra g is called a Cartan
subalgebra if

[x, h] ⊆ h ⇒ x ∈ h (124)

Note that (124) implies that g0 = h. The standard example of a Cartan subalgebra of sln is the set
of diagonal matrices, or any conjugate thereof. From this example, we see that what distinguishes
Cartan subalgebras among toral subalgebras is the fact that they are maximal (i.e. the subspace
of all diagonal matrices versus some subspace of diagonal matrices). In fact, this is a completely
general phenomenon, as we will now see.

Proposition 17. For a complex semisimple Lie algebra g, a Cartan subalgebra is the same thing
as a maximal toral subalgebra.

Proof. The fact that a Cartan subagebra is maximal easily follows from (124), since toral subalge-
bras are by their very nature abelian. For the converse, let us consider a maximal toral subalgebra
h and prove that

g0 = h (125)

Once we do so, it will follow that h is a Cartan subalgebra, as it satisfies the defining property
(124) (because of (122), if a certain x has a non-zero component in some gα with α ̸= 0, then
[x, g0] ̸⊆ g0). Consider any x ∈ g0 and its Jordan decomposition

x = xss + xn

For any y ∈ h, we have [x, y] = 0 by definition, hence [xss, y] = [xn, y] = 0 by (103). Therefore, we
have xss, xn ∈ g0. If xss /∈ h, then h ⊕ Cxss would be a toral subalgebra, which would contradict
the maximality of h. Therefore, we conclude that xss ∈ h ⇒ x ∈ xn + h, and so

adx

∣∣∣
g0

= adxn

∣∣∣
g0

is a nilpotent operator on g0. By Corollary 4, we conclude that g0 is a nilpotent Lie algebra.

Let us first assume that [g0, g0] ̸= 0. Using Theorem 12, show that nilpotent Lie algebras have the
property that their center intersects any non-zero ideal non-trivially. Therefore, there would exist

0 ̸= z ∈ z(g0) ∩ [g0, g0]

Since the Killing form is a s.i.b.f., the fact that z ∈ [g0, g0] implies that

(y, z)g = 0, ∀y ∈ h

On the other hand, since any x ∈ g0\h is nilpotent and comutes with z ∈ z(g0), then it is an easy
fact that

(x, z)g = trg(adxadz) = 0 (126)
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This implies that (g0, z)g = 0, which contradicts the non-degeneracy of the restricted pairing (123).
We therefore conclude that [g0, g0] = 0, i.e. g0 is abelian. However, we have already seen that any
x ∈ g0\h would have to be nilpotent, so (126) would hold for all z ∈ g0. By the non-degeneracy of
the restricted pairing (123), we conclude that x = 0, hence g0 = h.

As a consequence of Proposition 17, Cartan subalgebras of complex semisimple Lie algebras g exist:
just start from the toral subalgebra 0 and enlarge it as much as possible. All Cartan subalgebras
of g have the same dimension, which is called the rank of g.

9.3

In light of the discussion in the previous Subsection, it makes sense to consider the decomposition
(120) for a maximal toral subalgebra (because then the decomposition would be as fine as possible).
Thus, we henceforth let h be a Cartan subalgebra, and the decomposition in question takes the
form

g = h
⊕
α∈R

gα (127)

where R simply denotes the set of non-zero linear functionals α : h → C that have the property
that gα ̸= 0 (and we use the fact that g0 = h). Since g is a finite-dimensional Lie algebra, the set R
is finite. It is called the root system of g, and its elements are called roots. Because the pairing
(123) is non-degenerate when α+ β = 0, we have

α ∈ R ⇔ −α ∈ R (128)

The gα’s that appear in (127) are called the root spaces corresponding the roots α.

Example 6. Let g = sln and let h be the subalgebra of traceless diagonal matrices (with respect to
a certain basis). Thus, elements of h will be given by

x = (x1, . . . , xn) with x1 + · · ·+ xn = 0

We will consider the basis e1, . . . , en of h∗ given by

ei(x) = xi

With this in mind, the roots are {ei − ej}1≤i ̸=j≤n, with

(sln)ei−ej = CEij
Check the previous claim: all it really says is that if x is the diagonal matrix with entries (x1, . . . , xn),
then we have [x,Eij ] = (xi − xj)Eij. We conclude that the root decomposition is

sln = h
⊕

1≤i ̸=j≤n
CEij

A number of properties one can observe from Example 6 are quite general, for example the following.

Proposition 18. The set of roots spans h∗.

Proof. If the set of roots failed to span h∗, then there would be a non-zero element x ∈ h such
that α(x) = 0 for all α ∈ R. This implies that [x, gα] = 0 for all α ∈ R. However, the fact that x
commutes with h implies that x ∈ z(g). Since semisimple algebras have trivial center, then x = 0.
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9.4

Another property that one can observe from Example 6 is that all the root spaces are one-
dimensional. To prove that this is in fact a general phenomenon, recall the non-degenerate s.i.b.f.
(·, ·) : g× g → C. Its restriction to h is also non-degenerate, and so it provides an isomorphism

h ∼= h∗ (129)

We will write hα ∈ h for the element corresponding to any root α under the above isomorphism.
Moreover, we may define the non-degenerate pairing.

(·, ·) : h∗ × h∗ → C

via the isomorphism (129).

Lemma 7. For any root α and any eα ∈ gα, fα ∈ g−α, we have

[eα, fα] = (eα, fα)hα (130)

Proof. For any h ∈ h, we have

([eα, fα], h) = ([h, eα], fα) = α(h)(eα, fα)

By the non-degeneracy of (·, ·) restricted to h, this implies (130).

Proposition 19. For any root α, we have (α, α) ̸= 0, so we may define

Hα =
2hα
(α, α)

(131)

If Eα ∈ gα and Fα ∈ g−α are chosen so that

(Eα, Fα) =
2

(α, α)

then we have the commutation relations

[Hα, Eα] = 2Eα, [Hα, Fα] = −2Fα, [Eα, Fα] = Hα (132)

In other words, Eα, Fα, Hα provide a Lie algebra homomorphism

sl2 ↪→ g

so they are called a sl2-triple.

The reason for the normalization (131) is that such a Hα is independent of the choice of s.i.b.f.
We will soon see that the sl2-triple corresponding to a root α is unique, up to rescaling Eα, Fα by
opposite constants.
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Proof. of Proposition 19: Let us assume for the purpose of contradiction that (α, α) = 0, which
would mean that α(hα) = 0. We may choose eα ∈ gα and fα ∈ g−α such that (eα, fα) = 1 (by the
non-degeneracy of the s.i.b.f.) and so Lemma 7 would imply that the subalgebra a ⊂ g generated
by eα, fα, hα satisfies the Lie bracket relations

[hα, eα] = [hα, fα] = 0, [eα, fα] = hα

This subalgebra is solvable (due to the abelian ideal Chα) and so Lie’s Theorem 11 implies that
there is a basis of g in which adeα and adfα are upper triangular. Being the commutator of
upper triangular matrices, adhα would be strictly upper triangular. However, because h is a toral
subalgebra, adhα is also semisimple. Therefore, we conclude that adhα = 0, which implies that
hα ∈ z(g), which is impossible because semisimple Lie algebras have no center. Having showed that
(α, α) ̸= 0, properties (132) are straightforward computations, which we leave to you.

9.5

sl2-triples give a powerful tool for the study of semisimple Lie algebras.

Proposition 20. For any root α, the subspaces g±α are one-dimensional.

Proof. Consider any root α, fix a corresponding sl2-triple Eα, Fα, Hα and let

Vα = CHα

⊕
ℓ∈Z\0

gℓα (133)

By (122), the operators adEα , adFα , adHα provide a representation sl2 ↷ Vα. The weights of
this representation, i.e. the eigenvalues of adHα , are equal to the numbers 2ℓ in (133). Thus, Vα
is a representation of sl2 with all even weights and a one-dimensional 0 weight subspace, so (58)
implies that Vα must be irreducible. In particular, this implies that all the root subspaces g±α are
one-dimensional.

Proposition 21. For any two roots α and β, the number

cαβ =
2(α, β)

(α, α)

is an integer, and β − cαβα is also a root.

Proof. The numbers in question are equal to the weights of the adjoint action of an sl2-triple
Eα, Fα, Hα on gβ. Since any finite-dimensional representation of sl2 has integer weights, we conclude
that cαβ ∈ Z. As we have seen in Lecture 5, in any finite-dimensional representation of sl2, the
operators En and Fn provide isomorphisms between the subspaces of weight n and −n. In the
case at hand, if 0 ̸= x ∈ gβ and cαβ < 0 (respectively cαβ > 0), then ad

−cαβ

Eα
(x) ̸= 0 (respectively

ad
cαβ

Fα
(x) ̸= 0). Since the latter elements lie in gβ−cαβα, we conclude that β−cαβα is also a root.
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Proposition 22. The only multiples of a root α which are also roots are α and −α.

Proof. The fact that we have a non-degenerate pairing between gα and g−α implies that −α is a
root whenever α is a root. On the other hand, if αt were also a root for some t ∈ C\{±1}, then
Proposition 21 would imply that 2t ∈ Z. However, switching the roles of α and αt would also
imply that 2t−1 ∈ Z, which only leaves the possibility that t ∈ {±1

2 ,±2}. Let us assume without
loss of generality that t = ±2. Then as we saw in Proposition 20, Vα must be an irreducible
representation with respect to the sl2 triple Eα, Fα, Hα. This would imply that g2α ⊆ adEα(gα),
which is impossible since we already showed that gα is the one-dimensional space CEα.
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Lecture 10
10.1

Propositions 18, 20, 21, 22 can be unified in the following abstract definition of a root system
(which we will shortly see is a model for all complex semisimple Lie algebras).

Definition 19. An abstract root system is a R-vector space U endowed with an inner product

U × U
(·,·)−−→ R (134)

together with a finite set R ⊂ U\0 such that

R spans U (135)

if α ∈ R then kα

{
∈ R if k = −1

/∈ R otherwise
(136)

if α, β ∈ R then cαβ :=
2(α, β)

(α, α)
∈ Z (137)

if α, β ∈ R then sα(β) = β − cαβα ∈ R (138)

The rank of a root system is defined to be the dimension of U .

10.2

Axioms (137) and (138) might seem contrived at first, but they have a geometric meaning in terms
of reflections. The former of these axioms is a statement about the angle between the vectors α
and β. Meanwhile, the latter axiom concerns the function

sα : U → U, sα(λ) = λ− 2(α, λ)

(α, α)
α (139)

which is none other than the reflection across the hyperplane α⊥ perpendicular to α: thus (138)
merely says that the root system is preserved by such reflections.

Definition 20. The abstract Weyl group is the subgroup of GL(U) (actually of the orthogonal
group, because reflections preserve the inner product (134)) generated by the reflections {sα}α∈R.

Note that the Weyl group is always finite, because any element of GL(U) which fixes every root
must be the identity due to (135). The reason for the word “abstract” in Definition 20 is to
differentiate it from the Weyl group of a complex semisimple Lie algebra g, which is defined as

W = NG(H)/H (140)

where G is the complex Lie group with Lie algebra g, and H is a closed Lie subgroup with Lie
algebra given by a Cartan subalgebra of G (such a H is called a maximal torus). As you can expect,
W in (140) is isomorphic to the abstract Weyl group corresponding to the root system of g, though
we will not prove it.

Example 7. For the root system of sln, we have that

sei−ej (. . . , xi, . . . , xk, . . . , xj , . . . ) = (. . . , xj , . . . , xk, . . . , xi, . . . )

The corresponding Weyl group is easily seen to be the symmetric group Sn.
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10.3

It turns out that the axioms of a root system are very restrictive: in rank 1, this is probably not
so surprising, since the only root system in R is the root system associated to the Lie algebra sl2:
this root system is called “type A1”, where the subscript denotes the rank.

Things are a bit more interesting in rank 2, i.e. U = R2. In this case, the angle θ between two
non-collinear roots α, β ∈ R is given by the following formula (we let |α| =

√
(α, α))

cos θ =
(α, β)

|α||β|
=
cαβ
2

· |α|
|β|

=
cβα
2

· |β|
|α|

⇒ (cos θ)2 =
cαβcβα

4

Therefore, we must have 0 ≤ cαβcβα < 4. As axiom (137) requires that cαβ and cβα be integers, we
only have the following options (we assume without loss of generality that |α| ≤ |β|, so |cαβ| ≥ |cβα|):

� cαβ = 0 ⇔ cβα = 0, which implies θ = π
2

� cαβ = cβα = 1, which implies |α| = |β| and θ = π
3

� cαβ = cβα = −1, which implies |α| = |β| and θ = 2π
3

� cαβ = 2 and cβα = 1, which implies |α|
√
2 = |β| and θ = π

4

� cαβ = −2 and cβα = −1, which implies |α|
√
2 = |β| and θ = 3π

4

� cαβ = 3 and cβα = 1, which implies |α|
√
3 = |β| and θ = π

6

� cαβ = −3 and cβα = −1, which implies |α|
√
3 = |β| and θ = 5π

6

With this in mind, the following are easily seen to be root systems, because the angle between and
length of any two roots are admissible by the discussion above (the notation A1×A1, A2, B2

∼= C2

and G2 will be explained in Theorem 19).

What is more interesting is that the above are all the rank 2 root systems, up to linear transfor-
mations. Indeed, consider any rank 2 root system R and look at the most obtuse angle between
two non-collinear roots: if this angle is π

2 ,
2π
3 , 3π

4 , 5π
6 , the root system is A1 × A1, A2, B2 = C2,

G2, respectively (prove this yourselves; the idea is that once you draw two vectors with the most
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obtuse angle between them, the fact that R is preserved under the reflections (139) means that R
must contain a copy R′ of the root system of type A1 × A1, A2, B2 = C2, G2, respectively; but if
R contained any other root α, you could find some root β ∈ R′ which would violate the angle and
length conditions in the bullets above).

10.4

What about root systems of arbitrary rank? The bulleted list in the previous Subsection actually
pertains to any pair of non-collinear elements of any root system, and thus controls the angle
between and lengths of any pair of roots. For instance, we ask you to prove the following Lemma
by examining all the rank 2 systems above.

Lemma 8. If α ̸= β ∈ R have the property that (α, β) > 0, then α− β ∈ R.

Let us now consider arbitrary root systems R, and develop some further tools to classify them.

Definition 21. Any hyperplane in U that does not intersect R determines a decomposition

R = R+ ⊔R− (141)

into positive and negative roots, depending on which side of U they lie. Clearly, R− = −R+. A
simple root is a positive root which cannot be written as a sum of two or more positive roots.

For the root system associated to sln, the usual choice is to let

R+ =
{
ei − ej

∣∣∣1 ≤ i < j ≤ n
}

R− =
{
ei − ej

∣∣∣1 ≤ j < i ≤ n
}

The simple roots are then αi = ei − ei+1, with i ∈ {1, . . . , n− 1}.

Proposition 23. (a) Every positive root can be written uniquely as a sum of simple roots.

(b) The simple roots determine a basis of U (so there are as many of them as the rank of R).

Proof. (a) We may successively decompose any positive root α into sums of positive roots. This
process must terminate after finitely many steps (since there are finitely many positive roots, and
all of them are at least a fixed distance away from the hyperplane separating R+ from R−) and
when it terminates, we will have written α as a sum of simple roots.

(b) By the previous part and axiom (135), the simple roots span U . To prove that they are linearly
independent, note that

α ̸= β simple ⇒ (α, β) ≤ 0 (142)

(indeed, otherwise Lemma 8 would imply that either α−β or β−α is a positive root, which would
contradict the simplicity of α and β). However, it is a classic and easy exercise to show that any
set of vectors which have all non-acute angles between them must be linearly independent.
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10.5

The following result, which will occupy the remainder of this lecture, shows that a set of simple
roots determines the entire R. In what follows, we fix a set of simple roots α1, . . . , αr of R.

Theorem 18. The Weyl group W is generated by the simple reflections{
si = sαi

}
i∈{1,...,r}

(143)

and any root can be obtained by some element of W acting on some simple root αi.

The theorem above says that a Weyl group is a particular case of a so-called Coxeter group. The
first step in proving Theorem 18 is to systematize the freedom we had in choosing the decomposition
(141).

Definition 22. Consider the hyperplanes α⊥ perpendicular to the the roots α ∈ R. A connected
component C of

U
∖ ⋃
α∈R

α⊥

is called a Weyl chamber. The boundary hyperplanes of a chamber are often called its walls.

By definition, a Weyl chamber is the set of all x ∈ U such that (x, α) has a given sign for all roots
α ∈ R. As the decomposition (141) partitions the roots into two sets, depending on whether their
pairing with a given x ∈ U is positive or negative, we conclude that the decomposition itself only
depends on the Weyl chamber of x. In other words, a choice of positive/negative roots is equivalent
to a choice of positive/negative Weyl chamber C± (namely the chamber consisting of x’s whose
inner product with the positive/negative roots is > 0).

Recall that the reflections sα of (139) are by definition given by reflecting in the hyperplanes α⊥.
By the axiom that the Weyl group action takes any root β to a root β′ it follows that W takes the
hyperplane β⊥ to β′⊥ and thus W takes Weyl chambers to Weyl chambers.

Proposition 24. The Weyl group action on the Weyl chambers is transitive.

Proof. It is a common feature of hyperplane arrangements that any two chambers C and C′ can be
connected by a sequence of Weyl chambers

C = C0, C1, . . . , Ck−1, Ck = C′

such that Ci and Ci+1 are adjacent chambers separated by a single hyperplane α⊥. That means
that the reflection sα takes Ci to Ci+1, which implies that some element of the Weyl group takes C
to C′.

Corollary 7. For any two sets of positive roots R = R+⊔R− = R′+⊔R′−, there exists an element
of the Weyl group taking R± to R′±.
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Proof. Let C and C′ be the positive Weyl chambers with respect to R+ and R′+, respectively.
Proposition 24 says that there exists an element w of the Weyl group which sends C to C′. Since
elements of the Weyl group act by orthogonal matrices, they preserve the scalar product, so a
positive root with respect to C will be sent to a positive root with respect to C′ (check this fact).
Since the number of positive roots is always the same, this proves that w(R+) = R′+.

It is also easy to see that a Weyl group element taking R+ to R′+ must also take the simple roots
inside R+ to the simple roots inside R′+.

10.6

Let us now fix a decomposition (141). By definition, the positive Weyl chamber C+ is defined by
the property (x, α) > 0 for all α ∈ R+. By Proposition 23, this is equivalent to

(x, αi) > 0

where α1, . . . , αr are the simple roots inside R+. This implies that the walls of the chamber C+

are actually α⊥
1 , . . . , α

⊥
r , since it is impossible to encounter any other wall α⊥ (i.e. have (x, α) = 0)

without first encountering one of the walls α⊥
1 , . . . , α

⊥
r (i.e. have (x, αi) = 0 for some i ∈ {1, . . . , r}).

Proposition 25. For any chamber C, there exist simple reflections i1, . . . , ik such that

C = si1 . . . sik(C
+) (144)

Proof. By Proposition 24, there exists a sequence of Weyl chambers

C+ = C0, C1, . . . , Ck−1, Ck = C

such that Cℓ−1 is separated from Cℓ by a single hyperplane. We will prove that each Cℓ can be
written in the form (144) by induction on ℓ. So assume that we have

Cℓ−1 = si1 . . . siℓ−1
(C+) (145)

and Cℓ is separated from Cℓ−1 by the hyperplane α⊥. This hyperplane must be of the form
si1 . . . siℓ−1

(α⊥
iℓ
) for some iℓ ∈ I, because the walls of C+ are the α⊥

i ’s. We conclude that

α⊥ = si1 . . . siℓ−1
(α⊥

iℓ
) ⇔ α = si1 . . . siℓ−1

(αiℓ)

The obvious formula
sw(α) = wsαw

−1 (146)

∀w ∈W,α ∈ R, then allows us to deduce the required identity Cℓ = si1 . . . siℓ(C+) from (145).

Proof. of Theorem 18: Since a choice of Weyl chamber is equivalent to a choice of positive roots,
Proposition 25 means that for any two collections of positive roots, we can find a product of simple
reflections that takes one to the other. By (146) then, any Weyl group element can be written as a
product of simple reflections. To see that any root can be obtained by some element of W acting
on some simple root, it suffices to show that any root can be made to be a simple root with respect
to some hyperplane (just choose the hyperplane very close to the simple root in question).
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Lecture 11
11.1

In the previous lecture, we showed that one can reconstruct a root system from a set of simple roots
{αi}i∈I . In turn, we will soon see that such a set of simple roots is completely determined (up to
an angle-preserving linear transformation of U) by the following notion that encodes the lengths of
simple roots and the angles between them.

Definition 23. A Cartan matrix of rank r is a square matrix with integer entries

C = (cij)1≤i,j≤r (147)

such that

� cii = 2 and cij ≤ 0 for all i ̸= j.

� cij = 0 ⇔ cji = 0.

� C = DS, where D is a diagonal matrix with positive entries on the diagonal and S is a
positive-definite symmetric matrix.

We can associate a Cartan matrix to any root system R, by letting cij = cαiαj for some set of
simple roots α1, . . . , αr. One chooses the matrices D and S to have entries 2

(αi,αi)
and (αi, αj),

respectively, with the notation in Definition 19. Then the positive-definiteness of S is equivalent to
the fact that α1, . . . , αr are a basis of E. For instance, the Cartan matrix of sln is

2 −1 0
... 0 0 0

−1 2 −1
... 0 0 0

0 −1 2
... 0 0 0

. . . . . . . . .
. . . . . . . . . . . .

0 0 0
... 2 −1 0

0 0 0
... −1 2 −1

0 0 0
... 0 −1 2


(148)

Note that positive-definiteness implies that in a Cartan matrix we have the equation

0 ≤ cijcji < 4

just like we saw in Subsection 10.3. We typically refer to the Cartan matrix of a root system because
changing the choice of simple roots merely has the effect of permuting the rows and columns of C.

Proposition 26. Up to an angle-preserving linear transformation of U , a root system R is com-
pletely determined by its Cartan matrix.
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Proof. The key insight is that given a Cartan matrix C, the decomposition

C = DS

is unique up to rescaling D and S by inverse amounts (this is because multiplying D on the right by
a non-scalar diagonal matrix D′ would have to be counterbalanced by multiplying S on the left by
D′−1, but this would spoil the symmetry of S). Therefore, once the Cartan matrix of a root system
is given, the inner products (αi, αj) are all determined up to constant multiple. It is easy to show
that this determines the simple roots α1, . . . , αr up to an angle-preserving linear transformation.
But once a collection of simple roots is fixed, Theorem 18 implies that any root can be obtained
from them by successively applying reflections si = sαi .

11.2

Beside Cartan matrices, which provide a numerical characterization of simple roots in a root system,
we also have the following graphical realization of the same information.

Definition 24. The Dynkin diagram associated to a root system R is the graph with vertex set
{1, . . . , r}, and

� 0 edges between i and j if the angle between αi and αj is π
2

� 1 edge between i and j if the angle between αi and αj is 2π
3

� 2 edges between i and j if the angle between αi and αj is 3π
4

� 3 edges between i and j if the angle between αi and αj is 5π
6

(by the discussion in Subsections 10.3 and 10.4, the above are the only possibilities for angles
between simple roots). If there are multiple edges between two vertices, we draw an arrow from the
one corresponding to a longer root to the one corresponding to a shorter root.

It is easy to see that there is a one-to-one correspondence(
Cartan matrices

)
↔

(
Dynkin diagrams

)
(149)

wherein the set of rows/columns of a Cartan matrix is identified with the vertex set {1, . . . , r}
of a Dynkin diagram. For any two vertices i ̸= j ∈ {1, . . . , r}, the number of edges between i
and j in the Dynkin diagram are perfectly encoded in the non-positive integer entries cij and cji
of the Cartan matrix, as explained in the bulleted list of Subsection 10.3. More explicitly, since
filling out a Cartan matrix and drawing a Dynkin diagram are rank 2 tasks (i.e. ones which you
perform by considering any principal 2 × 2 submatrix and any 2-vertex subgraph at a time) then
the correspondence (149) is completely determined by the assignment(

2 0
0 2

)
↔ A1 ×A1(

2 −1
−1 2

)
↔ A2(

2 −1
−2 2

)
↔ B2 = C2(

2 −1
−3 2

)
↔ G2
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(see below for the notation An, Bn, Cn, Dn, E6,7,8, F4, G2 of Dynkin diagrams).

Definition 25. Given root systems R ⊂ U and R′ ⊂ U ′, their direct sum is the root system

(R, 0) ⊔ (0, R′) ⊂ E ⊕ E′

A root system which is not isomorphic to a direct sum of root systems is called irreducible.

Proposition 27. In an irreducible root system R, either all roots have the same length (in which
case R is called simply laced) or there are only two possible values for the root lengths (in which
case they are called short and long roots, the latter being

√
2 or

√
3 times longer than the fomer).

Proof. In an irreducible root system, the action W ↷ U is irreducible (hence the terminology),
because the orthogonal complement of any W -invariant subspace with respect to the inner product
(134) would also be W -invariant. As a consequence, the W -orbit of any root α spans U , so for any
other root β there must exist w ∈W such that (w(α), β) ̸= 0. The bulleted list in Subsection 10.3
then implies that the length of β and the length of α (which is equal to the length of w(α) for any
w ∈ W ) must differ by a ratio of 1,

√
2,
√
3. Thus, if the roots could have 3 or more lengths, we

could always find a pair of them which differ by a ratio other than 1,
√
2,
√
3, thus contradicting

the previous sentence.

11.3

It is easy to see that a Cartan matrix (respectively Dynkin diagram) corresponds to an irreducible
root system if and only if it is not block diagonal (respectively connected). Therefore, the task is
to classify irreducible Dynkin diagrams.

Theorem 19. Any irreducible Dynkin diagram is one of the following list

where the index denotes the number of vertices in the diagram.
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Proof. The fact that the pictures above represent Dynkin diagrams comes from the fact that the
corresponding Cartan matrices C = DS have positive determinant

detAn = n+ 1

detBn = 2

detCn = 2

detDn = 4

detE6,7,8 = 3, 2, 1

detF4 = 1

detG2 = 1

and that the top left corners of the corresponding S matrices also have positive determinant (since
they are also Cartan matrices of the Dynkin diagrams listed above). By Sylvester’s criterion, these
matrices S are positive definite. On the other hand, the following pictures are not Dynkin diagrams,
as the corresponding matrices S have determinant 0 1.

These are called extended Dynkin diagrams, and they reflect the representation theory of affine
Lie algebras (these are infinite-dimensional Lie algebras obtained from g[t±1] where g is a complex
semisimple Lie algebra, that we will not study in the present course). But the relevance of the
pictures above to us is that no Dynkin diagram can contain an extended Dynkin diagram as a
subdiagram, or else its symmetrized Cartan matrix S would have a principal minor of determinant
0 (and thus fail to be positive definite). Thus, we have the following observations:

� A Dynkin diagram cannot contain a cycle: indeed, if we had a cycle i1, i2, . . . , ik, ik+1 = i1 with
k ≥ 3, then we would be able to contradict the positive-definiteness of S = (dij)1≤i,j≤r as follows

k∑
s=1

(disis + 2disis+1) ≤ 0

1The convention for Ã1 is that its Cartan matrix is

(
2 −2
−2 2

)
.
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whch holds because C = DS implies that cij =
2dij
dii

for all i ̸= j ∈ {1, . . . , r}, and we have

dii + djj ≤ −4dij ⇔
1

−cij
+

1

−cji
≤ 2

for all negative integers cij , cji.

� If a Dynkin diagram contains a triple edge, then it is just G2 (otherwise it would contain a copy
of the extended Dynkin diagram G̃2, or one whose matrix S is negative-definite)

� if a Dynkin diagram contains a double edge, then it is just Bn, Cn or F4, because otherwise it
would contain a copy of Ã1, B̃n, C̃n or F̃4.

� if a Dynkin diagram has only single edges and no cycles, then it is either one of An, Dn, E6,7,8,

or else it would contain a copy of D̃n or Ẽ6,7,8.

11.4

We have already seen that An is the Dynkin diagram of the Lie algebra sln+1. We also have

Bn is the Dynkin diagram of o2n+1

Cn is the Dynkin diagram of sp2n

Dn is the Dynkin diagram of o2n for n > 1

As for the Lie algebras that correspond to types E,F,G, we will construct them abstractly in the
next lecture. As the Dynkin diagrams above are all irreducible, the corresponding Lie algebras are
simple. For a semisimple Lie algebra g, its Dynkin diagram is simply the disconnected union of the
Dynkin diagrams of the direct summands of g.
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Lecture 12
12.1

In the previous lectures, we showed how to perform the following operations

semisimple Lie algebras⇝ root systems⇝ Cartan matrices ↔ Dynkin diagrams

We will now show how to reconstruct a semisimple Lie algebra from the Cartan matrix / Dynkin
diagram of the corresponding root system. Before we do so, we must be able to define Lie algebras
by generators and relations. The following discussion is completely analogous to that of groups,
that you encountered in Math 211. Let K be any field of characteristic 0.

Definition 26. Let S be any set called an alphabet. The free associative algebra on S is

AS =
⊕

s1...sk word in S

Ks1 . . . sk

with the operation given by concatenation of words. We can think of AS as a Lie algebra with
respect to commutator, and we define the free Lie algebra on S

fS (150)

as the Lie subalgebra of AS generated by all one-letter words.

If you like universal properties, the free Lie algebra is determined up to isomorphism by the fact
that for any Lie algebra g, a choice of elements {xs ∈ g}s∈S extends uniquely to a Lie algebra
homomorphism fS → g. But perhaps more explicitly, you should think of fS as consisting of all
K-linear combination of symbols

[. . . [[s1, s2], s3], [s4, s5] . . . ] (151)

(for any s1, s2, · · · ∈ S and any distribution of square brackets) that satisfy antisymmetry and the
Jacobi identity. While this may seem complicated, it is controlled by beautiful combinatorics. For
instance, let us fix a total order on the set S, which determines a lexicographic order on the set of
all words written with the alphabet S. We call a word w Lyndon (also known as Shirshov) if it
is lexicographically smaller than all of its proper suffixes. Then a classic result is that

fS =
⊕

w Lyndon

Kxw

where xw ∈ fS are defined recursively by xs = s for any s ∈ S, while for any Lyndon word w of
length ≥ 2 we set

xw = [xw′ , xw′′ ]

where w′′ is the longest suffix of w = w′w′′ which is also a Lyndon word (with this choice, it is not
hard to show that the prefix w′ is also a Lyndon word).

Definition 27. Let R denote any set of relations, i.e. K-linear combinations of symbols (151).
Then

fS|R = fS

/
(ideal generated by R

)
(152)

is called the Lie algebra generated by S modulo relations R.

For example, if R is the set of {ss′ − s′s}s,s′∈S , then (152) is called the free abelian Lie algebra on
S, and it is simply isomorphic to ⊕s∈SKs with trivial Lie bracket.

64



12.2

We henceforth work over the ground field C. For any Cartan matrix C = (cij)i,j∈{1,...,r}, we define

gC (153)

to be the Lie algebra generated by symbols {Ei, Fi, Hi}i∈{1,...,r} modulo the relations

[Hi, Hj ] = 0 (154)

[Hi, Ej ] = cijEj (155)

[Hi, Fj ] = −cijFj (156)

[Ei, Fj ] = δijHi (157)

for all i, j ∈ {1, . . . , r}, as well as

ad
1−cij
Ei

(Ej) = 0 (158)

ad
1−cij
Fi

(Fj) = 0 (159)

for all distinct i, j ∈ {1, . . . , r}. The main result of this Lecture is the following theorem of Serre.

Theorem 20. For any irreducible Cartan matrix C, the Lie algebra gC is finite-dimensional and
simple. Its root system has associated Cartan matrix precisely equal to C.

Moreover, it is easy to see that if C = C1 ⊕C2, then gC ∼= gC1 ⊕ gC2 . Coupling this with Lemma 5
allows us to extend Theorem 20 to arbitrary Cartan matrices, by replacing the word “simple” with
“semisimple”.

Example 8. When C is the Cartan matrix (148) of type An−1, the isomorphism gC ∼= sln is given
by

Ei ⇝ Ei,i+1, Fi ⇝ Ei+1,i, Hi ⇝ Eii − Ei+1,i+1

It is easy to check by hand that relations (154)-(159) hold in sln, which gives a homomorphism
gC → sln. It is also easy to check that this homomorphism is surjective (because the matrices Ei,i+1

and Ei+1,i generate sln as a Lie algebra) and so it must be an isomorphism due to gC being simple.

12.3

We start by identifying relations (154)-(159) in any complex semisimple Lie algebra g. Fix a s.i.b.f.
(·, ·) and a set of simple roots α1, . . . , αr of g. As in Proposition 19, we can pick elements

Eαi ∈ gαi and Fαi ∈ g−αi

such that [Eαi , Fαi ] = Hαi determine an sl2-triple, and so satisfy relations (154)-(157) with Ei
replaced by Eαi etc. To prove that these elements also satisfy (158), consider any i ̸= j and make⊕

ℓ∈Z
gαj+ℓαi
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into a representation of sl2 via the operators adEαi
, adFαi

, adHαi
. As we have seen in the proof of

Propositions 20 and 21, the weight of the ℓ-th direct summand in the formula above is

2(αi, αj)

(αi, αi)
+ 2ℓ = cij + 2ℓ

(check this fact). Since adFαi
(Eαj ) = 0 by (157), then we conclude that Eαj is a vector of lowest

weight cij . By Corollary 1, this implies that

ad
1−cij
Eαi

(Ej) = 0

which is precisely (158). Relation (159) is proved analogously. Therefore, we conclude that the
assignments Ei 7→ Eαi , Fi 7→ Fαi , Fi 7→ Fαi , ∀i ∈ {1, . . . , r} determine a Lie algebra homomorphism

gC → g (160)

where C is the Cartan matrix associated to g.

Proposition 28. The Eαi and Fαi defined above generate any complex semisimple Lie algebra g,
i.e. the homomorphism (160) is surjective.

Proof. Since any root is a non-negative integer combination of positive roots, it suffices to prove
the following statement in any complex semisimple Lie algebra g: if α and β are roots such that
α+ β is also a root, then

[gα, gβ] = gα+β (161)

(the inclusion ⊆ between the sets above is quite general, see (122)). To see this, one picks an sl2
triple Eα, Fα, Hα for the positive root α, and uses it to construct a representation of sl2 on⊕

ℓ∈Z
gβ+ℓα

In any representation of sl2, higher weight subspaces are obtained from the action of E on lower
weight subspaces. In the case at hand, since gα+β has higher weight than gβ, then we must have

gα+β = adEα(gβ)

which precisely implies (161).

12.4

Having showed that the homomorphism (160) is surjective, it will follow from Theorem 20 that it is
an isomorphism: thus, there exists a unique simple complex Lie algebra with any given irreducible
root system. As a stepping stone to proving Theorem 20, let us understand the Lie algebra

g̃C

freely generated by {Ei, Fi, Hi}1≤i≤r modulo relations (154)-(157), as per Definition 27. This Lie
algebra is graded by the root lattice

Q =
{
n1α1 + · · ·+ nrαr

∣∣∣n1, . . . , nr ∈ Z
}

(162)
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via
degEi = αi, degFi = −αi, degHi = 0 (163)

We will write Q± for the non-negative integer span of the positive/negative roots.

Proposition 29. Consider the following subalgebras of g̃C

ñ+C is spanned by arbitrary iterated Lie brackets of Ei’s

ñ−C is spanned by arbitrary iterated Lie brackets of Fi’s

h̃C is spanned by the Hi’s

Then we have
g̃C = ñ+C ⊕ h̃C ⊕ ñ−C

with ñ±C lying in degrees Q±\0 and h̃+C in degree 0.

Proof. Any element x ∈ g̃C is a linear combination of iterated Lie brackets of E’s, F ’s and H’s.
Let us consider any such Lie bracket, and reduce it via anti-symmetry and the Jacobi identity and
relations (154)-(157), so that it has the minimal number of E’s, F ’s and H’s. We must show that if
so reduced, then x must either be just an iterated Lie bracket of E’s, or an iterated Lie bracket of
F ’s, or a single H. Indeed, assume for the purpose of contradiction that some part of the iterated
Lie bracket in question involved

. . . [Fj , [Ei1 , . . . , [Eik−1
, Eik ] . . . ]] . . .

(the reason why we do not assume there are any H’s instead of the E’s in the formula above is that
they could be readily simplified by (155)). Then by repeated applications of the Jacobi identity, we
could ensure that the innermost Lie bracket is [Fj , Eia ] for some a, which can be simplified using
(157).

Proposition 30. ñ+C and ñ−C are freely generated by {Ei}1≤i≤r and {Fi}1≤i≤r, respectively, while

h̃C =
r⊕
i=1

CHi

Proof. Let us consider the tensor algebra TV of the vector space V =
⊕r

i=1Cvi. There is an action

g̃C ↷ TV

given by

Ei · (vj1 ⊗ · · · ⊗ jn) =
∑

1≤s≤n s.t. js=i

(cijs+1 + · · ·+ cijn)(vj1 ⊗ · · · ⊗ vjs−1 ⊗ vjs+1 ⊗ · · · ⊗ vjn)

Fi · (vj1 ⊗ · · · ⊗ vjn) = vi ⊗ vj1 ⊗ · · · ⊗ vjn

Hi · (vj1 ⊗ · · · ⊗ vjn) = −
n∑
s=1

(cij1 + · · ·+ cijn)(vj1 ⊗ · · · ⊗ vjn)
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Check that the above action is well-defined, by verifying the Lie bracket relations (154)-(157). From
the formula above, it is clear that the Fi do not satisfy any other Lie algebra relations between
themselves other than the ones prescribed by the free Lie algebra (by the very Definition 26). The
analogous statement for the Ei is proved likewise. Finally, because

Hi · vj = −cijvj

then any linear relation
∑r

i=1 γiHi = 0 would imply

r∑
i=1

γicij = 0

for all j. This is impossible, as the Cartan matrix C has positive determinant.

12.5

Let us now consider the ideals
i± ⊂ ñ±C

generated by relations (158) and (159), respectively.

Proposition 31. The direct sum i = i+ ⊕ i− is an ideal in g̃C , and we have

gC = g̃C

/
i

Proof. Let S+
ij and S−

ij denote the LHS of (158) and (159), respectively. Prove the formulas

[Fk, S
+
ij ] = 0, ∀i, j, k ∈ {1, . . . , r} (164)

[Ek, S
−
ij ] = 0, ∀i, j, k ∈ {1, . . . , r} (165)

in g̃C using repeated applications of the Jacobi identity and relations (155) and (157) (if you
prefer, you can work in the universal enveloping algebra by the injectivity of (80), where S±

ij can be

expressed as an alternating sum of binomial coefficients times Eki EjE
1−cij−k
i for k ∈ {0, . . . , 1−cij}).

By (164)-(165) and the fact that i± are ideals inside ñ±C , we conclude that i± are preserved under
Lie bracket with all E’s and F ’s. Because of (157) and the Jacobi identity, then i± are ideals of g̃C ,
and therefore so is their direct sum. We therefore obtain a surjective Lie algebra homomorphism

g̃C/i↠ gC (166)

However, anything in the kernel of the above function would be a combination of iterated commu-
tators of S±

ij ’s with E’s and F ’s. By (164)-(165), any such commutator would already be in i±, so
(166) is an isomorphism.
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Proof. of Theorem 20: Let us start with a technical observation: consider the adjoint action of any
sl2-triple Ei, Fi, Hi on gC . The Serre relations (158)-(159) precisely imply that the subrepresenta-
tion generated by any Ej or Fj is finite-dimensional, with weights in {cij , . . . ,−cij}. However, if the
representations generated by x and y are finite-dimensional, then so is the representation generated
by [x, y] (specifically, it would be spanned by Lie brackets of the basis vectors of the aforementioned
two representations). We conclude that any element gC generates a finite-dimensional subrepre-
sentation with respect to any sl2-triple. By Proposition 31, we have a decomposition

gC = h
⊕
β∈Q

gC,β

with respect to the grading (163). By Proposition 29, all the direct summands above are finite-
dimensional, and moreover

gC,β = 0 if β /∈ Q± (167)

and

gC,kαi
=

{
CEi if k = 1

0 if k > 1
and gC,−kαi

=

{
CFi if k = 1

0 if k > 1
(168)

We want to show that

dim gC,β =

{
1 if β ∈ R±

0 otherwise
(169)

To this end, choose any β ∈ Q and consider the adjoint action of the sl2 triple Ei, Fi, Hi on

Tβ,i =
⊕
ℓ∈Z

gC,β+ℓαi
(170)

The ℓ-th direct summand above has weight with respect to Hi equal to

2(αi, β)

(αi, αi)
+ 2ℓ

As explained in the first paragraph of the proof, any vector of Tβ,i generates a finite-dimensional
sl2 representation. Therefore, Corollary 2 implies that Tβ,i is finite-dimensional. As a consequence,
Corollary 1 implies that its subspaces of opposite weights have the same dimension, so in particular

dim gC,β = dim gC,si(β) (171)

where si is the simple reflection corresponding to αi. We leave it to you to show that if β is not a
multiple of a root, then there exists a sequence of reflections si that will land it in Q\(Q+ ∪Q−);
in this case (167) would imply the bottom option in (169). On the other hand if β is a multiple of
a root, then the last sentence in Theorem 18 implies that there is a sequence of reflections si that
will make it into a multiple of a simple root; in this case (168) would imply the top option in (169).

We showed that gC is finite-dimensional, and that the dimensions of its graded subspaces are given
by (169). It remains to prove that gC is simple, and to this end consider a non-zero ideal i ⊂ gC .
Because the Cartan matrix is invertible, the operators {adHi}i∈{1,...,r} act with disjoint spectrum
on the root spaces of gC . Since i is preserved by the aforementioned operators, then if some element
of i has a non-zero coefficient in some gC,α, then we can assume that i contains the subspace gC,α
in question. By the same logic as in (171), this implies that i contains gC,si(α) for all i. Because
the Weyl group acts transitively on the set of roots, then we conclude that i = gC .
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Lecture 13
13.1

We will now use the root system R associated to a complex semisimple Lie algebra g to describe
its complex representations. Fix a Cartan subalgebra h ⊂ g as in Lecture 9, a choice of posi-
tive/negative roots R = R+ ⊔ R−, and write α1, . . . , αr for the corresponding simple roots. Show
that the following is an immediate consequence of Proposition 8, using the various sl2-triples in g.

Proposition 32. Any finite-dimensional representation g ↷ V has a weight decomposition, i.e.

V =
⊕
λ∈P

Vλ (172)

where its weight subspaces are

Vλ =
{
v ∈ V

∣∣∣x · v = λ(x)v,∀x ∈ h
}

(173)

and the direct sum in (172) goes over the (integral) weight lattice

P =

{
λ ∈ h∗

∣∣∣2(λ, αi)
(αi, αi)

∈ Z,∀i ∈ {1, . . . , r}
}

(174)

Note that by the very definition of a root system, the weight lattice contains the root lattice (162)

P ⊇ Q (175)

The two lattices are in general not equal (in fact, the quotient P/Q is a finite group whose order
is equal to the determinant of the Cartan matrix). It is an exercise that the integrality condition

on λ from (174) is equivalent to the a priori stronger condition 2(λ,α)
(α,α) ∈ Z for all roots α.

Example 9. When g = sln, the weight lattice is

P =
{
(k1, . . . , kn) ∈ Cn

∣∣∣k1 + · · ·+ kn = 0, ki − ki+1 ∈ Z, ∀i ∈ {1, . . . , n− 1}
}

(176)

while the root lattice is

Q =
{
(k1, . . . , kn) ∈ Cn

∣∣∣k1 + · · ·+ kn = 0, ki ∈ Z, ∀i ∈ {1, . . . , n}
}

(177)

The fact that |P/Q| = n comes about by noting that each ki in (176) must be congruent to d
n modulo

Z, for one and the same value of d ∈ {0, . . . , n− 1}.

13.2

Consider now the root decomposition

g = h
⊕
α∈R

gα

By definition, h preserves the weight subspaces Vλ of any representation g ↷ V . Moreover, an easy
consequence of the Jacobi identity implies that

gα · Vλ ⊆ Vλ+α (178)
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Associated to our choice of positive roots R = R+ ⊔R−, we write

g = n+ ⊕ h⊕ n−

where n± = ⊕α∈R±gα. We will write
b = n+ ⊕ h (179)

which is called a Borel subalgebra (Prove that b is a solvable subalgebra of g; it is actually a
Theorem of Borel-Morozov that it is a maximal solvable subalgebra).

Definition 28. We say that λ ∈ P is a highest weight for a representation g ↷ V if

Vλ ̸= 0 and Vλ+α1 = · · · = Vλ+αr = 0

A highest weight vector of P will be some non-zero v ∈ Vλ as above.

Because of (178), any highest weight vector v satisfies

n+ · v = 0 (180)

If the highest weight of v is λ, then we have

h · v = λ(h)v, ∀h ∈ h (181)

Since one can always find a highest weight in any finite-dimensional representation, it is elementary
to obtain the following.

Proposition 33. Any finite-dimensional irreducible representation g ↷ V is a highest weight
representation, i.e. it is generated by a highest weight vector.

We will use the notion of highest weight to classify irreducible representations. As we have seen from
Theorem 16, this would completely characterize the representation theory of complex semisimple
Lie algebras, since any such representation uniquely decomposes as a direct sum of irreducible
representations (moreover, in the next lecture, we will learn how to use characters in order to
determine which particular irreducibles show up in the decomposition of any given representation).

13.3

Since irreducible representations are generated by highest weight vectors (as per Proposition 33),
the first step in constructing them is to construct the universal representation satisfying (180) and
(181).

Definition 29. The Verma module with highest weight λ is

M(λ) = Ug
⊗
Ub

C (182)

where the tensor product is defined with respect to

� the injection Ub ↪→ Ug of universal enveloping algebras corresponding to b ↪→ g
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� the surjection Ub↠ C which sends n+ to 0 and every h ∈ h to λ(h).

As (182) is an Ug module with respect to the left action, Subsection 6.1 implies that it is also a
representation of g. Note that it is infinite-dimensional.

Remark. You may recognize M(λ) as being the induced representation IndUg
Ub(Cλ), where Cλ is

the one-dimensional representation of b corresponding to n+ acting by 0 and h acting by the weight
λ. Indeed, in Math 314 you studied induced representations of finite groups, but the situation for
infinite-dimensional algebras such as Ug is analogous.

If we let vλ denote a non-zero vector in the one-dimensional representation Cλ, then any element
of M(λ) is of the form xvλ for some x ∈ Ug. However, because of the PBW Theorem 10, we have
an isomorphism

Ug = Un− ⊗ Uh⊗ Un+ = Un− ⊗ Ub

Therefore, any element x ∈ Ug is a linear combination of products of elements from Un− and
elements of Ub. Since any element of Ub acts on vλ by multiplying it with a constant, while
elements of Un− act on Vλ freely, the assignment xvλ → x yields a vector space isomorphism

M(λ) ∼= Un− (183)

Moreover, the dimension of the weight spaces of the above isomorphism match up: any element
x1 . . . xnvλ (for various xk ∈ g−βk) lies in the λ−β1−· · ·−βn weight subspace ofM(λ), by repeated
applications of (178). Therefore, (183) and the PBW Theorem 10 tell us that

dimM(λ)µ =
∣∣∣{unordered positive roots β1, . . . , βn with sum λ− µ

}∣∣∣ (184)

In particular, M(λ) has finite-dimensional weight subspaces.

13.4

Let L(λ) be any irreducible representation of g generated by a vector of highest weight λ ∈ h∗.
There exists a homomorphism of g representations

π :M(λ)↠ L(λ)

defined by sending vλ to a highest weight vector of L(λ) (check that this homomorphism is well-
defined and surjective, using (180) and (181)). By definition, the kernel of π is a proper g subrep-
resentation of M(λ) that is graded by weights h∗, and the irreducibility of L(λ) implies that it is a
maximal such proper graded subrepresentation.

Proposition 34. Up to isomorphism, there exists a unique irreducible representation g ↷ L(λ)
generated by a vector of highest weight λ ∈ h∗.

The Proposition is an easy consequence of the fact thatM(λ) has a unique maximal graded subrep-
resentation (simply take the sum of all graded proper subrepresentations, which does not coincide
with M(λ), because it cannot contain vλ). Therefore, we will refer to the representation L(λ).
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Theorem 21. L(λ) is finite-dimensional if and only if λ lies in

P+ =

{
λ ∈ P

∣∣∣ 2(λ, αi)

(αi, αi)
∈ Z≥0,∀i ∈ {1, . . . , r}

}
(185)

Such weights are called dominant.

For g = sln, a weight as in (176) is dominant if and only if ki−ki+1 ∈ Z≥0 for all i ∈ {1, . . . , n−1}.

Proof. of Theorem 21: Assume that L(λ) is finite-dimensional. Take an sl2-triple Ei, Fi, Hi corre-
sponding to any i ∈ {1, . . . , r}. Then L(λ) is a finite-dimensional representation with respect to
this sl2, with the highest weight vector of L(λ) having weight

2(λ, αi)

(αi, αi)

As we saw in Lecture 5, the numbers above must be non-negative integers in order to have a finite-
dimensional representation of sl2, so we conclude that λ ∈ P+. Conversely, assume λ ∈ P+. We
will actually prove the following stronger claim on the weight subspaces of L(λ)

dimL(λ)µ = dimL(λ)w(µ) (186)

for all µ ∈ P and w ∈ W . Indeed, because L(λ) is a quotient of M(λ), then its weight subspaces
are finite-dimensional and only non-zero in the cone {λ −m1α1 − · · · −mrαr}m1,...,mr≥0. If there
existed such a non-zero root subspace with m1+ · · ·+mr arbitrarily large, then by applying formula
(186) for the element w ∈ W which sends the positive roots to negative roots (Corollary 7), then
we would conclude the existence of a non-zero subspace with weight w(λ) + m′

1α1 + · · · + m′
rαr

for arbitrarily large m′
1 + · · ·+m′

r. As this is impossible, the only option is for L(λ) to only have
finitely many non-zero weight subspaces, hence it must be finite-dimensional.

Let us now prove (186). Let us consider an sl2-triple Ei, Fi, Hi for every i ∈ {1, . . . , r}, and define

V ⊆ L(λ)

to consist of all vectors v on which the Ei’s and Fi’s act locally nilpotently, i.e.

ENi v = FNi v = 0

for all i ∈ {1, . . . , r} and for some N ≥ 0 which may repend on i and v. Firstly, the highest weight
vector vλ lies in V because for all i ∈ {1, . . . , r} we have

Eivλ = 0 and F k+1
i vλ = 0, where k =

2(λ, αi)

(αi, αi)

(note that the second equality is non-trivial, but we leave it to you to show that F k+1
i vλ is annihi-

lated by all the Ej ’s, and thus would generate a proper highest weight subrepresentation of L(λ)
if it weren’t zero). Secondly, V is preserved by the action of g, because for any x ∈ g and any
i ∈ {1, . . . , r} we have

[ENi , x] =
N−1∑
M=0

(
N

M

)
[Ei, [Ei, . . . , [Ei, x] . . . ]]︸ ︷︷ ︸

N−M copies of Ei

EMi
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in Ug, and analogously for Fi. Thus, if a vector v is annihilated by large enough powers of every
Ei, then so if xv because the iterated commutators in the equation above will all be 0 if N −M is
large enough. The remarks labeled firstly and secondly above imply that V is a subrepresentation
of L(λ), hence V = L(λ) due to the latter’s irreducibility. Then let us consider any weights µ and
si(µ) and define the subrepresentation (with respect to the sl2-triple Ei, Fi, Hi) generated by the
corresponding weight subspaces

L(λ)µ ⊕ · · · ⊕ L(λ)si(µ)

By the discussion above, this subrepresentation is finite-dimensional, with L(λ)µ and L(λ)si(µ)
having Hi-weights

2(µ, αi)

(αi, αi)
and

2(si(µ), αi)

(αi, αi)
= −2(µ, αi)

(αi, αi)

By Corollary 1, the two weight subspaces in question must have the same dimension, which yields
(186) for w = si. Since the simple reflections generate the Weyl group, then (186) holds for all
w.

Together with Theorem 16, we conclude the following.

Corollary 8. Any finite-dimensional representation g ↷ V is isomorphic to

V ∼= L(λ1)⊕ · · · ⊕ L(λk)

for λ1, . . . , λk ∈ P+.

13.5

Motivated by Theorem 21, we have the following.

Definition 30. The fundamental weights ω1, . . . , ωr are defined such that

2(ωj , αi)

(αi, αi)
= δij (187)

for all i, j ∈ {1, . . . , r}.

Fundamental weights form a Z≥0-basis of the cone of dominant weights, meaning that any dominant
weight is of the form n1ω1 + · · ·+ nrωr for some n1, . . . , nr ∈ Z≥0. This has the following effect on
the representation theory: show that the tensor product

g ↷ L(ω1)
⊗n1 ⊗ · · · ⊗ L(ωr)

⊗nr

has highest weight n1ω1 + · · ·+ nrωr = λ. By Corollary 8, we have

L(ω1)
⊗n1 ⊗ · · · ⊗ L(ωr)

⊗nr ∼= L(λ)
⊕

β∈Q+\0

L(λ− β)⊕multiplicities

where the multiplicities above can be construed as a generalization of the Clebsch-Gordan rule (71).
The formula above implies that L(λ) can be recursively constructed (up to irreducible representa-
tions of the form L(λ− β) with β ∈ Q+\0) from tensor products of the irreducible representations
corresponding to the fundamental weights. Thus it is in this sense that the fundamental weights
“generate” the finite-dimensional representation theory of g.
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Example 10. Whereas the simple roots of sln are {ei− ei+1}1≤i≤n−1, the fundamental weights are

ωi =
n− i

n
· (e1 + · · ·+ ei)−

i

n
· (ei+1 + · · ·+ en)

The irreducible representation corresponding to ωi is none other than

∧iCn

Indeed, the highest weight vector of ∧iCn is v1 ∧ · · · ∧ vi, which is an eigenvector for the action of
any x = (x1, . . . , xn) ∈ h with eigenvalue

x1 + · · ·+ xi = (ωi, x)

To see that ∧iCn is irreducible, take any linear combination of tensors

vt1 ∧ · · · ∧ vti + . . .

where t1 < · · · < ti and the ellipsis stands for sequences lexicographically smaller than (t1, . . . , ti).
Then applying the operators {Edtd}1≤d≤i,td ̸=d in succession to the above linear combination will
simply produce v1 ∧ · · · ∧ vi.
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Lecture 14
14.1

In Math 314, you saw that characters are certain functions on a finite group that completely
determine its representations. For representations of semisimple Lie algebras, the analogous role is
taken by the following notion.

Definition 31. The character of a representation g ↷ V is the sum

χV =
∑
λ∈P

(dimVλ)e
λ (188)

where {eλ}λ∈P are formal symbols.

Although eλ is a formal symbol, it arises from the following construction. As per Subsection 3.5,
the representation g ↷ V lifts to a representation of the simply connected Lie group

G↷ V

with Lie algebra g (this G is also called semisimple). There is an abelian subgroup called maximal
torus

H ⊂ G

with Lie algebra h, and integral weights lift to characters

λ : H → C∗

Then we have for all t = ex ∈ H

χV (t) =
∑
λ∈P

(dimVλ)e
λ(x) = tr(t|V ) (189)

This is now closer to the usual definition of characters as traces of group elements acting in the
representation V . Of course, you may object that (189) only measures the trace on elements of H
and not of G. But because the trace is conjugation invariant, the formula above actually measures
the trace on any conjugates of H, which are dense in G (think about SLn and arbitrary conjugates
of diagonal matrices).

14.2

Another reason why we prefer formal expressions like (188) to actual numbers like (189) is that the
former also applies to infinite-dimensional representations V (with finite-dimensional weight spaces)
while the latter only applies to finite-dimensional representations. For example, (184) implies that

χM(λ) =
eλ∏

α∈R+(1− e−α)
=

eλ+ρ∏
α∈R+(e

α
2 − e−

α
2 )

(190)

(the reason for the shift in the numerator by eρ, where ρ = 1
2

∑
α∈R+ α, will be made apparent in

Theorem 22). To make the above formula precise, we expand the denominator as a power series

1

1− e−α
= 1 + e−α + e−2α + . . .
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and use the following operations on the formal symbols eλ:

eλeµ = eλ+µ

eλ = e−λ

The motivation behind these operations is given by the following formulas, which we invite you to
prove

χV⊕V ′ = χV + χV ′ (191)

χV⊗V ′ = χV χV ′ (192)

χV ∨ = χV (193)

with respect to direct sums, tensor products and dual representations (see (30), (31), (32))

14.3

We will now calculate the character of irreducible representations L(λ) of a semisimple Lie algebra
g. The key result is the following formula of Freudenthal, which allows one to recursively compute
the dimensions of the weight spaces of any irreducible representation starting from the obvious

dimL(λ)λ = 1

Proposition 35. For any µ ∈ P , we have(
(λ+ ρ, λ+ ρ)− (µ+ ρ, µ+ ρ)

)
dimL(λ)µ = 2

∑
α∈R+

∞∑
k=1

(µ+ kα, α) dimL(λ)µ+kα (194)

where ρ = 1
2

∑
α∈R+ α (note that the sum in the RHS is actually finite).

Proof. Let us consider the Casimir element associated to the non-degenerate s.i.b.f. of g

C =
r∑
i=1

HiH
i +

∑
α∈R+

(α, α)

2
(EαFα + FαEα)

where Hi and H i are dual bases of h (the latter basis can be readily expressed in terms of the

former basis using the formulas (Hα, Hβ) =
4(α,β)

(α,α)(β,β) , but we will not need this).

Lemma 9. C acts on L(λ) via the scalar (λ+ ρ, λ+ ρ)− (ρ, ρ).

Proof. Since C is central, we know that it acts on L(λ) as a scalar, so it remains to identify this
scalar by calculating how C acts on the highest weight vector vλ. Any sl2-triple Eα, Fα, Hα will
have the property that

Eαvλ = 0 ⇒ FαEαvλ = 0

hence

EαFαvλ = Hαvλ =
2(λ, α)

(α, α)
vλ

On the other hand, it is an easy manipulation with symmetric bilinear forms that

r∑
i=1

HiH
ivλ = (λ, λ)vλ (195)

Since (λ, λ) +
∑

α∈R+(λ, α) = (λ+ ρ, λ+ ρ)− (ρ, ρ), the Lemma follows.
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Let us now consider any positive root α ∈ R+, and decompose L(λ) into subrepresentations of the
sl2-triple Eα, Fα, Hα. These will all be of the form

L(λ)β+m
2
α ⊕ L(λ)β+m−2

2
α ⊕ · · · ⊕ L(λ)β−m−2

2
α ⊕ L(λ)β−m

2
α (196)

where we assume that m is maximal such that the above weight spaces actually appear in L(λ).
The shift by β is chosen so that (α, β) = 0, which implies that as a representation of the sl2-triple
Eα, Fα, Hα, the β + d

2α direct summand above has weight d. By the inclusion-exclusion principle,
it is easy to see that the number of copies of the irreducible representation sl2 ↷ L(n) in the above
representation is

dimL(λ)β+n
2
α − dimL(λ)β+n+2

2
α

for all n ≥ 0. Meanwhile, (64), (65), (66) tell us how EαFα and FαEα act on the direct sum-
mands above. Specifically, since EαFα + FαEα acts on the d-th weight subspace of an irreducible
representation sl2 ↷ L(n) by the constant

n(n+ 2)

2
− d2

2

Let’s assume d ≥ 0 for simplicity. We conclude that EαFα + FαEα acts on L(λ)β+ d
2
α with trace

∞∑
n=d

n(n+ 2)

2

(
dimL(λ)β+n

2
α − dimL(λ)β+n+2

2
α

)
− d2

2
dimL(λ)β+ d

2
α

If we write µ = β + d
2α⇔ d = 2(µ,α)

(α,α) and manipulate the telescoping sum above, we conclude that

(α, α)

2
(EαFα + FαEα)

acts on L(λ)µ with trace

(µ, α) dimL(λ)µ + 2

∞∑
k=1

(µ+ kα, α) dimL(λ)µ+kα

Summing over all α ∈ R+ and adding to the mix the fact (analogous to (195)) that
∑r

i=1HiH
i

acts in L(λ)µ as multiplication with (µ, µ), we conclude that C acts on L(λ)µ with trace

2(µ, ρ) dimL(λ)µ + 2
∑
α∈R+

∞∑
k=1

(µ+ kα, α) dimL(λ)µ+kα

Comparing this with Lemma 9 implies (194).

14.4

A purely algebraic manipulation (which you may find in §25.2 of Fulton-Harris) allows one to
deduce from Freudenthal’s formula (194) the following so-called Weyl character formula.

Theorem 22. The character of any irreducible representation g ↷ L(λ) is given by the formula

χL(λ) =

∑
w∈W sgn(w)ew(λ+ρ)∏
α∈R+(e

α
2 − e−

α
2 )

(197)

where sgn :W → {±1} is the group homomorphism that sends the simple reflections si to −1 (it is
a generalization of the sign homomorphism of Sn).
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Certain observations about (197) are in order.

1. The w = e summand in the numerator of (197) yields precisely the character of the Verma
module in (190), and this corresponds to the fact that M(λ) contains a copy of the irreducible
representation L(λ) generated by the highest weight vector. Conversely, we can interpret the
right-hand side of (197) as an alternating sum of the right-hand sides of (190). This underlies the
famous BGG (Bernstein-Gelfand-Gelfand) resolution of L(λ) as a complex of Verma modules.

2. The numerator of (197) is an antisymmetric expression with respect to the Weyl group action, i.e.
the operation {eµ ⇝ ew(µ)}w∈W , has the effect of multiplying the numerator of (197) by sgn(w).
It is a general property of Coxeter groups that the denominator of (197) is also antisymmetric,
and it divides the numerator, thus revealing the fact that the right-hand side of (197) is a linear
combination of eµ’s (as expected).

3. As per the previous point, the right-hand side of (197) is a symmetric expression with respect
to the Weyl group action, which gives an equivalent proof of (186).

4. We can get a formula for the dimension of L(λ) by taking the evaluation of the right-hand side
of (197) as eµ ⇝ eµ(0) where 0 is the origin of h. This is strictly speaking ill-defined, since we
get 0

0 . The way to resolve this issue is to evaluate the right-hand side of (197) as eµ ⇝ eµ(x) for
x ∈ h tending to 0 along a generic line. If you do so appropriately, you will find that

dimL(λ) =
∏
α∈R+

(λ+ ρ, α)

(ρ, α)
(198)

14.5

Finally, let us consider the whole discussion above for g = sln. For a weight λ = (k1, . . . , kn) with
k1 + · · ·+ kn = 0, we will write

eλ = zk11 . . . zknn

The Weyl group W = Sn acts on monomials above simply by permuting the variables z1, . . . , zn.
For the positive root α = ei − ej , we have

eα =
zi
zj

and ρ = 1
2(n− 1, n− 3, . . . , 3− n, 1− n). Therefore, the Weyl character formula reads (after some

algebraic manipulations)

χL(λ) =

∑
w∈Sn

sgn(w)
∏n
i=1 z

ki+n−i
w(i)∏

1≤i<j≤n(zi − zj)

One recognizes the denominator of the right-hand side as the Vandermonde determinant, and the
entire right-hand side as the Schur function associated to the partition (k1, k2, . . . , kn−1, kn). This
underlies the Schur-Weyl duality between irreducible representations of sln and those of symmetric
groups, which as you have seen in Math 314, also have characters which can be interpreted as Schur
functions.
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